Dr. Dhandapani Gurusamy
My Social Links

Dr. Dhandapani Gurusamy

Assistant Professor
Department of Botany, Kongunadu Arts and Science College (Autonomous), Bharathiar University, Coimbatore, Tamil Nadu, India


Highest Degree
PostDoc. in Agricultural Entomology from University of Kentucky, United States

Share this Profile

Biography

I have experience in molecular gene cloning of various proteins of yellow mosaic virus (YMV) and genetic transformation in black gram against YMV. Construction of binary vectors with various Bt genes, drought and herbicide tolerance genes and Agrobacterium mediated genetic transformation studies in rice and model system of Tobacco. Functional genomics studies in cotton under various condition.

Area of Interest:

Plant Genetic Engineering
100%

Research Publications in Numbers

Books
0
Chapters
2
Articles
34
Abstracts
0

Selected Publications

  1. Gurusamy, D., J.L. Howell, S.C.R.R. Chereddy, K. Mogilicherla and S.R. Palli, 2021. Improving RNA interference in the southern green stink bug, Nezara viridula. J. Pest Sci., 94: 1461-1472.
    CrossRef  |  Direct Link  |  
  2. Dhandapani, R.K., D. Gurusamy and S.R. Palli, 2021. Development of catechin, poly-l-lysine, and double-stranded RNA nanoparticles. ACS Applied Bio Mater., 4: 4310-4318.
    CrossRef  |  Direct Link  |  
  3. Laisney, J., D. Gurusamy, Z.E. Baddar, S.R. Palli and J.M. Unrine, 2020. RNAi in Spodoptera frugiperda Sf9 cells via nanomaterial mediated delivery of dsRNA: a comparison of poly-l-arginine polyplexes and poly-l-arginine-functionalized au nanoparticles. ACS Applied Mater. Interfaces, 12: 25645-25657.
    CrossRef  |  Direct Link  |  
  4. Dhandapani, R.K., D. Gurusamy, J.J. Duan and S.R. Palli, 2020. RNAi for management of Asian long-horned beetle, Anoplophora glabripennis: identification of target genes. J. Pest Sci., 93: 823-832.
    CrossRef  |  Direct Link  |  
  5. Chereddy, S.C.R.R., D. Gurusamy, J.L. Howell and S.R. Palli, 2020. Double‐stranded RNAs targeting inhibitor of apoptosis gene show no significant cross‐species activity. Arch. Insect Biochem. Physiol., Vol. 104. 10.1002/arch.21683.
    CrossRef  |  Direct Link  |  
  6. Chen, X., S.C.R.R. Chereddy, D. Gurusamy and S.R. Palli, 2020. Identification and characterization of highly active promoters from the fall armyworm, Spodoptera frugiperda. Insect Biochem. Mol. Biol., Vol. 126. 10.1016/j.ibmb.2020.103455.
    CrossRef  |  Direct Link  |  
  7. Chen, X., J. Koo, D. Gurusamy, K. Mogilicherla and S.R. Palli, 2020. Caenorhabditis elegans systemic RNA interference defective protein 1 enhances RNAi efficiency in a lepidopteran insect, the fall armyworm, in a tissue-specific manner. RNA Biol., Vol. 18. 10.1080/15476286.2020.1842632.
    CrossRef  |  Direct Link  |  
  8. Amal, T.C., P. Karthika, G. Dhandapani, S. Selvakumar and K. Vasanth, 2020. A simple and efficient Agrobacterium-mediated in planta transformation protocol for horse gram (Macrotyloma uniflorum Lam. Verdc.). J. Genet. Eng. Biotechnol., Vol. 18. 10.1186/s43141-020-00023-z.
    CrossRef  |  Direct Link  |  
  9. Dhandapani, R.K., D. Gurusamy, J.L. Howell and S.R. Palli, 2019. Development of CS-TPP-dsRNA nanoparticles to enhance RNAi efficiency in the yellow fever mosquito, Aedes aegypti. Sci. Rep., Vol. 9. 10.1038/s41598-019-45019-z.
    CrossRef  |  Direct Link  |  
  10. Yoon, J.S., K. Mogilicherla, D. Gurusamy, X. Chen, S.C.R.R. Chereddy and S.R. Palli, 2018. Double-stranded RNA binding protein, staufen, is required for the initiation of RNAi in coleopteran insects. Proc. Nat. Acad. Sci., 115: 8334-8339.
    CrossRef  |  Direct Link  |  
  11. Saini, R.P., V. Raman, G. Dhandapani, E.V. Malhotra and R. Sreevathsa et al., 2018. Silencing of HaAce1 gene by host-delivered artificial microRNA disrupts growth and development of Helicoverpa armigera. PLoS ONE, Vol. 13. 10.1371/journal.pone.0194150.
    CrossRef  |  Direct Link  |  
  12. Hande, A.S., I.S. Katageri, M.P. Jadhav, S. Adiger and S. Gamanagatti et al., 2017. Transcript profiling of genes expressed during fibre development in diploid cotton (Gossypium arboreum L.). BMC Genomics, Vol. 18. 10.1186/s12864-017-4066-y.
    CrossRef  |  Direct Link  |  
  13. Kumar, S., M. Kanakachari, D. Gurusamy, K. Kumar and P. Narayanasamy et al., 2016. Genome-wide transcriptomic and proteomic analyses of bollworm-infested developing cotton bolls revealed the genes and pathways involved in the insect pest defence mechanism. Plant Biotechnol. J., 14: 1438-1455.
    CrossRef  |  Direct Link  |  
  14. Kanakachari, M., A.U. Solanke, N. Prabhakaran, I. Ahmad, G. Dhandapani, N. Jayabalan and P.A. Kumar, 2015. Evaluation of suitable reference genes for normalization of qPCR gene expression studies in brinjal (Solanum melongena L.) during fruit developmental stages. Applied Biochem. Biotechnol., 178: 433-450.
    CrossRef  |  Direct Link  |  
  15. Dhandapani, G., M. Kanakachari, K.V. Padmalatha, M.L.V. Phanindra and V.K. Singh et al., 2014. A gene encoding cold-circadian rhythm-RNA binding-like protein (CCR-like) from upland cotton (Gossypium hirsutum L.) confers tolerance to abiotic stresses in transgenic tobacco. Plant Mol. Biol. Rep., 33: 22-42.
    CrossRef  |  Direct Link  |  
  16. Chhapekar, S., S. Raghavendrarao, G. Pavan, C. Ramakrishna and V.K. Singh et al., 2014. Transgenic rice expressing a codon-modified synthetic CP4-EPSPS confers tolerance to broad-spectrum herbicide, glyphosate. Plant Cell Rep., 34: 721-731.
    CrossRef  |  Direct Link  |  
  17. Kumar, S., K. Kumar, P. Pandey, V. Rajamani and K.V. Padmalatha et al., 2013. Glycoproteome of elongating cotton fiber cells. Mol. Cell. Proteomics, 12: 3677-3689.
    CrossRef  |  Direct Link  |  
  18. Jain, A., B. Sinilal, G. Dhandapani, R.B. Meagher and S.V. Sahi, 2013. Effects of deficiency and excess of zinc on morphophysiological traits and spatiotemporal regulation of zinc-responsive genes reveal incidence of cross talk between micro- and macronutrients. Environ. Sci. Technol., 47: 5327-5335.
    CrossRef  |  Direct Link  |  
  19. Padmalatha, K.V., D.P. Patil, K. Kumar, G. Dhandapani and M. Kanakachari et al., 2012. Functional genomics of fuzzless-lintless mutant of Gossypium hirsutum L. cv. MCU5 reveal key genes and pathways involved in cotton fibre initiation and elongation. BMC Genomics, Vol. 13. 10.1186/1471-2164-13-624.
    CrossRef  |  Direct Link  |  
  20. Raghavendra, K.P., M.L.V. Phanindra, B.K. Kumar, G. Dhandapani and P.A. Kumar, 2011. Identification of differentially expressed genes during bud stage of cotton boll development using suppression subtractive hybridization and cDNA macroarray. J. Plant Biochem. Biotechnol., 20: 12-19.
    CrossRef  |  Direct Link  |  
  21. Padmalatha, K.V., G. Dhandapani, M. Kanakachari, S. Kumar and A. Dass et al., 2011. Genome-wide transcriptomic analysis of cotton under drought stress reveal significant down-regulation of genes and pathways involved in fibre elongation and up-regulation of defense responsive genes. Plant Mol. Biol., 78: 223-246.
    CrossRef  |  Direct Link  |  
  22. Leelavathi, S., A. Bhardwaj, S. Kumar, A. Dass and R. Pathak et al., 2011. Genome-wide transcriptome and proteome analyses of tobacco psaA and psbA deletion mutants. Plant Mol. Biol., 76: 407-423.
    CrossRef  |  Direct Link  |