Dr. Cuneyt  Celiktas
My Social Links

Dr. Cuneyt Celiktas

Professor
Ege University, Turkiye


Highest Degree
Ph.D. in Nuclear Physics from Ege University, Turkiye

Share this Profile

Biography

Dr. Cuneyt Celiktas is currently working as Associate Professor at Ege University, Turkey. He has completed his Ph.D. and MSc in Nuclear Physics from same University in 20101 & 1995 respectively. His main area of interest focuses on Physics, Radiation, Scientific Technology, Instrumental Technology, and Nuclear Energy. He has published 43 in journals contributed as author/co-author.

Area of Interest:

Physics
100%
Radiation
62%
Scientific Technology
90%
Instrumental Technology
75%
Nuclear Energy
55%

Research Publications in Numbers

Books
0
Chapters
0
Articles
0
Abstracts
0

Selected Publications

  1. Tektas, G. and C. Celiktas, 2017. Design of a virtual function generator for signal generation. Adv. Applied Sci., 2: 23-27.
  2. Tektas, G. and C. Celiktas, 2017. Comparison of a designed virtual counter with a real counter. AIP Conf. Proc., Vol. 1815. 10.1063/1.4976418.
    CrossRef  |  Direct Link  |  
  3. Schlattauer, L., L. Parali, J. Pechousek, I. Sabikoglu and C. Celiktas et al., 2017. Calibration of gamma-ray detectors using Gaussian photopeak fitting in the multichannel spectra with LabVIEW-based digital system. Eur. J. Phys., Vol. 38. 10.1088/1361-6404/aa7a7a/meta.
    CrossRef  |  Direct Link  |  
  4. Ermis, E.E. and C. Celiktas, 2017. Enhancement of energy spectra through constant fraction timing method. AIP Conf. Proc., Vol. 1815. 10.1063/1.4976405.
    CrossRef  |  Direct Link  |  
  5. Pechousek, J., D. Konecny, P. Novak, L. Kouril, P. Kohout, C. Celiktas and M. Vujtek, 2016. Software emulator of nuclear pulse generation with different pulse shapes and pile-up. Nucl. Instruments Methods Phys. Res. Sect. A: Accelerators Spectrometers Detectors Assoc. Equipment, 828: 81-85.
    CrossRef  |  Direct Link  |  
  6. Ermis, E.E., F.B. Pilicer, E. Pilicer and C. Celiktas, 2016. A comprehensive study for mass attenuation coefficients of different parts of the human body through Monte Carlo methods. Nucl. Sci. Tech., Vol. 27. 10.1007/s41365-016-0053-2.
    CrossRef  |  Direct Link  |  
  7. Ermis, E.E., C. Celiktas and E. Pilicer, 2016. A method for coincidence timing resolution enhancement. Rev. Scient. Instrum., Vol. 87. 10.1063/1.4948925.
    CrossRef  |  Direct Link  |  
  8. Tektas, G. and C. Celiktas, 2015. Comparison of a designed virtual oscilloscope with a real oscilloscope. EPJ Web Conf., Vol. 100. 10.1051/epjconf/201510004004.
    CrossRef  |  Direct Link  |  
  9. Tektas, G. and C. Celiktas, 2015. Applying virtual oscilloscope to signal measurements in scintillation detectors. Radiat. Sci. Tech., 1: 1-5.
  10. Ermis, E.E., E. Pilicer and C. Celiktas, 2015. Comparison of the simulated gamma-ray attenuation coefficients with the real measurements. Nucl. Sci. Tech., Vol. 26. 10.13538/j.1001-8042/nst.26.050401.
    CrossRef  |  Direct Link  |  
  11. Ermis, E.E., E. Pilicer and C. Celiktas, 2015. A theoretical way to determine gamma-ray mass attenuation coefficients of materials. Turk. J. Phys., (In Press). .
    Direct Link  |  
  12. Ermis, E.E. and C. Celiktas, 2015. Testing the FLUKA Monte Carlo program performance using the experimental alpha energy spectrum. Radiat. Sci. Tech., 1: 6-9.
  13. Ermis, E.E. and C. Celiktas, 2015. Mass attenuation coefficient calculations of different detector crystals by means of FLUKA Monte Carlo method. EPJ Web Conf., Vol. 100. 10.1051/epjconf/201510002003.
    CrossRef  |  Direct Link  |  
  14. Ermis, E.E., G. Tektas, Z. Ozcelik, C. Celiktas and J. Pechousek, 2015. Comparison of energy resolution of NaI(Tl) scintillation detectors obtained by analog and digital ways. Radiat. Sci. Tech., 1: 10-12.
  15. Ermis, E.E., E. Pilicer and C. Celiktas, 2015. A theoretical way to determine gamma-ray mass attenuation coefficients of materials. Turk. J. Phys., 39: 91-113.
    CrossRef  |  Direct Link  |  
  16. Ermis, E.E., G. Tektas, E. Pilicer, C. Celiktas and J. Pechousek, 2014. Analogue and digital analysis of the effects of some parameters in determination of the best experimental energy resolution. Turk. J. Phys., 38: 203-213.
    CrossRef  |  Direct Link  |  
  17. Ermis, E.E., C. Celiktas and E. Pilicer, 2014. Comparison of theoretical and experimental alpha energy spectra. Open J. Mod. Phys., 1: 59-65.
    Direct Link  |  
  18. Ermis, E.E., C. Celiktas and E. Pilicer, 2014. A method to enhance coincidence time resolution with applications for medical imaging systems (TOF/PET). Radiat. Meas., 62: 52-59.
    CrossRef  |  Direct Link  |  
  19. Celiktas, C., E.E. Ermis and E. Pilicer, 2014. Note on the comparison of experimental and simulated gamma energy spectra for NaI with 137Cs, 60Co and 241Am. Ann. Nuclear Energy, 73: 355-360.
    CrossRef  |  Direct Link  |  
  20. Akcaglar, S., S. Akdurak, M. Bayburt and C. Celiktas, 2014. Development of an amplifier for nuclear spectrometers. Sci. Technol., 4: 31-41.
    Direct Link  |  
  21. Ermis, E.E., C. Celiktas and H. Denizli, 2013. Comparison of resolving time values of different scintillation detectors in the coincidence experiments. J. Radioanal. Nuclear Chem., 295: 1377-1383.
    CrossRef  |  Direct Link  |  
  22. Ermis, E.E. and C. Celiktas, 2013. Time resolution investigations for general purpose plastic scintillation detectors in different thicknesses. J. Radioanal. Nuclear Chem., 295: 523-536.
    CrossRef  |  Direct Link  |  
  23. Ermis, E.E. and C. Celiktas, 2013. Time resolution comparison of general purpose plastic scintillation detectors for low-energy beta particles by means of timing methods. Balkan Phys. Lett., 21: 257-265.
    Direct Link  |  
  24. Ermis, E.E. and C. Celiktas, 2013. Analysis of detector-source distance and detector bias voltage for time resolution of plastic scintillation detectors. Int. J. Instrum. Sci., 2: 1-5.
    CrossRef  |  Direct Link  |  
  25. Celiktas, C., M. Bayburt and S. Bayburt, 2013. Energy resolution improvement of a CdTe detector by means of a timing technique. Int. J. Instrum. Sci., 2: 6-12.
    CrossRef  |  Direct Link  |  
  26. Ermis, E.E. and C. Celiktas, 2012. Timing applications to improve the energy resolution of NaI(Tl) scintillation detectors. Int. J. Instrum. Sci., 1: 54-62.
    CrossRef  |  Direct Link  |  
  27. Ermis, E.E. and C. Celiktas, 2012. Effects of detector-source distance and detector bias voltage variations on time resolution of general purpose plastic scintillation detectors. Applied Radiat. Isotopes, 70: 2682-2685.
    CrossRef  |  Direct Link  |  
  28. Ermis, E.E. and C. Celiktas, 2012. Determination of beta attenuation coefficients by means of timing method. Ann. Nuclear Energy, 41: 115-118.
    CrossRef  |  Direct Link  |  
  29. Ermis, E.E. and C. Celiktas, 2012. Alpha energy resolution enhancement of a Si surface barrier detector. J. Radioanal. Nuclear Chem., 293: 869-875.
    CrossRef  |  Direct Link  |  
  30. Ermis, E.E. and C. Celiktas, 2012. A different way to determine the gamma-ray linear attenuation coefficients of materials. Int. J. Instrum. Sci., 1: 41-44.
    CrossRef  |  Direct Link  |  
  31. Celiktas, C., E.E. Ermis and M. Bayburt, 2012. Energy resolution improvement of NaI(Tl) scintillation detectors by means of a timing discrimination method. J. Radioanal. Nuclear Chem., 293: 377-382.
    CrossRef  |  Direct Link  |  
  32. Celiktas, C., 2012. Selection of beta signals in electronic noise band. J. Radioanal. Nuclear Chem., 293: 419-423.
    CrossRef  |  Direct Link  |  
  33. Celiktas, C., 2012. A method to obtain a noiseless beta spectrum. J. Radioanal. Nuclear Chem., 292: 1317-1323.
    CrossRef  |  Direct Link  |  
  34. Celiktas, C. and E.E. Ermis, 2012. Alpha energy resolution improvement of a general purpose plastic scintillation detector. J. Radioanal. Nuclear Chem., 293: 715-720.
    CrossRef  |  Direct Link  |  
  35. Celiktas, C., 2011. A method to determine the gamma-ray linear attenuation coefficient. Ann. Nuclear Energy, 38: 2096-2100.
    CrossRef  |  Direct Link  |  
  36. Avci, O., S. Bayburt, M. Bayburt and C. Celiktas, 2011. Development of an arbitrary function generator and test system for nuclear spectrometers. Radiat. Meas., 46: 730-733.
    CrossRef  |  Direct Link  |  
  37. Celiktas, C. and Y. Arslan, 2009. Determination of linear attenuation coefficients of materials by using timing method. Instrum. Sci. Technol., 37: 431-436.
    CrossRef  |  Direct Link  |  
  38. Celiktas, C., 2008. Development of a discrimination set-up. Instrum. Sci. Technol., 36: 432-436.
    CrossRef  |  Direct Link  |  
  39. Selvi, S. and C. Celiktas, 2007. Compton suppression through rise-time analysis. Applied Radiat. Isotopes, 65: 1265-1268.
    CrossRef  |  Direct Link  |  
  40. Celiktas, C., 2007. Improving the MCA spectra of BC‐400 plastic scintillation detectors at room temperature. Instrum. Sci. Technol., 36: 88-96.
    CrossRef  |  Direct Link  |  
  41. Celiktas, C., 2007. Energy resolution improvement of the gamma spectrum of 133Ba radioisotope by means of a timing technique. Instrum. Sci. Technol., 35: 537-541.
    CrossRef  |  Direct Link  |  
  42. Celiktas, C., 2007. Development of two spectrometers for the noiseless β energy spectrum of radiocarbon at room temperature. Instrum. Sci. Technol., 35: 141-152.
    CrossRef  |  Direct Link  |  
  43. Celiktas, C., 2007. Development of a setup for the discrimination of β+ and γ rays. Instrum. Sci. Technol., 35: 411-418.
    CrossRef  |  Direct Link  |  
  44. Celiktas, C., 2007. Application of a developed setup to β-rays to improve the β energy spectrum. Nukleonika, 52: 47-49.
    Direct Link  |  
  45. Celiktas, C., 2007. An investigation for obtaining pure energy spectra at room temperature. Instrum. Sci. Technol., 35: 341-348.
    CrossRef  |  Direct Link  |  
  46. Celiktas, C., 2007. An apparatus to obtain a pure annihilation peak. Instrum. Sci. Technol., 35: 75-83.
    CrossRef  |  Direct Link  |  
  47. Celiktas, C., 2006. Improvement of an energy spectrum by means of a timing technique. Instrum. Sci. Technol., 34: 341-346.
    CrossRef  |  Direct Link  |  
  48. Celiktas, C., 2006. An application of a timing measurement: Separation of a photo peak. Instrum. Sci. Technol., 34: 335-340.
    CrossRef  |  Direct Link  |  
  49. Celiktas, C., 2006. An apparatus for β-γ ray separation. Instrum. Sci. Technol., 34: 455-461.
    CrossRef  |  Direct Link  |  
  50. Celiktas, C. and C. Tav, 2005. A method for obtaining the pure annihilation peak of 22Na radioisotope. Radiat. Meas., 39: 569-572.
    CrossRef  |  Direct Link  |  
  51. Celiktas, C., S. Selvi and G. Yegin, 2004. Improving the resolution of beta scattering spectroscopy. Radiat. Phys. Chem., 71: 1009-1013.
    CrossRef  |  Direct Link  |  
  52. Celiktas, C., 2004. Improvement of electron scattering and transmission spectra on 204Tl isotope. Nuclear Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mate. Atoms, 222: 301-306.
    CrossRef  |  Direct Link  |  
  53. Selvi, S. and C. Celiktas, 2002. Revealing low-energy part of the beta spectra. Nuclear Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip., 482: 449-456.
    CrossRef  |  Direct Link  |  
  54. Celiktas, C., 2001. Beta spectrometers with surface barrier detector and plastic scintillator: Applications to 90Sr, 204Tl, 210Pb and 14C. Turk. J. Phys., 25: 97-107.
    Direct Link  |