Prof. Dr. Abdelouahab  Zerarka
My Social Links

Prof. Dr. Abdelouahab Zerarka

Professor
University of Biskra, Algeria


Highest Degree
Ph.D. in Applied Mathematics from University of Bordeaux, France

Share this Profile

Area of Interest:

Mathematics
100%
Computation Mathematics
62%
Applied Mathematics
90%
Theoretical Physics
75%
Nonlinear Systems
55%

Research Publications in Numbers

Books
0
Chapters
0
Articles
33
Abstracts
0

Selected Publications

  1. Djoudi, W., G. Debowsky and A. Zerarka, 2016. New exact structures for the nonlinear lattice equation by the auxiliary fractional shape. J. Partial Differ. Equat., 29: 195-203.
    CrossRef  |  Direct Link  |  
  2. Djoudi, W., G. Debowsky and A. Zerarka, 2016. New exact solutions for the nonlinear lattice problem via the auxiliary fractional shape. Optik-Int. J. Light Electron Opt., 127: 11049-11054.
    CrossRef  |  Direct Link  |  
  3. Djoudi, W. and A. Zerarka, 2016. Exact structures for the KdV-mKdV equation with variable coefficients via the functional variable method. Optik-Int. J. Light Electron Opt., 127: 9621-9626.
    CrossRef  |  Direct Link  |  
  4. Djoudi, W. and A. Zerarka, 2016. Exact solutions for the KdV-mKdV equation with time-dependent coefficients using the modified functional variable method. Cogent Math., Vol. 3. 10.1080/23311835.2016.1218405.
    CrossRef  |  Direct Link  |  
  5. Djoudi, W. and A. Zerarka, 2014. Construction of some new exact structures for the nonlinear lattice equation. Int. J. Phys. Sci., 9: 520-524.
    Direct Link  |  
  6. Zerarka, A. and S. Guergueb, 2013. Integration of the hyperbolic telegraph equation in (1+1) dimensions via the generalized differential quadrature method. Results Phys., 3: 20-23.
    CrossRef  |  Direct Link  |  
  7. Zerarka, A., A. Soukeur and H. Saidi, 2012. On some Volterra and Fredholm problems via the unified integrodifferential quadrature method. ISRN Comput. Math. 10.5402/2012/139514.
    CrossRef  |  Direct Link  |  
  8. Zerarka, A., S. Ouamane and A. Attaf, 2011. Construction of exact solutions to a family of wave equations by the functional variable method. Waves Random Complex Media, 21: 44-56.
    CrossRef  |  Direct Link  |  
  9. Zerarka, A., S. Ouamane and A. Attaf, 2010. On the functional variable method for finding exact solutions to a class of wave equations. Applied Math. Comput., 217: 2897-2904.
    CrossRef  |  Direct Link  |  
  10. Zerarka, A., H. Saidi, A. Attaf and N. Khelil, 2010. Computation of the Schrodinger equation via the discrete derivatives representation method: Improvement of solutions using particle swarm optimization. J. Mod. Phys., 1: 44-47.
    CrossRef  |  Direct Link  |  
  11. Zerarka, A., A. Soukeur and N. Bensalah, 2010. Integral reduction arising in double transfer and excitation amplitude. Commun. Theoret. Phys., 53: 551-554.
    CrossRef  |  Direct Link  |  
  12. Zerarka, A. and S. Ouamane, 2010. Application of the functional variable method to a class of nonlinear wave equations. World J. Modell. Simul., 6: 150-160.
    Direct Link  |  
  13. Zerarka, A., A. Soukeur and N. Khelil, 2009. The particle swarm optimization against the Runge's phenomenon: Application to the generalized integral quadrature method. Int. J. Math. Stat. Sci., 1: 171-176.
  14. Zerarka, A. and K. Libarir, 2009. A semi-inverse variational method for generating the bound state energy eigenvalues in a quantum system: The Schrodinger equation. Commun. Nonlinear Sci. Numer. Simul., 14: 3195-3199.
    CrossRef  |  Direct Link  |  
  15. Zerarka, A. and B. Nine, 2009. The particle swarm optimization approach applied to the Von-Karman equation. World J. Modell. Simul., 5: 302-306.
    Direct Link  |  
  16. Zerarka, A. and B. Nine, 2008. Solutions of the Von Karman equations via the non-variational Galerkin-B-spline approach. Commun. Nonlinear Sci. Numer. Simul., 13: 2320-2327.
    CrossRef  |  Direct Link  |  
  17. Boumedjane, Y., H. Saidi, S. Hassouni and A. Zerarka, 2007. Some first excited energy levels for the generalized Killingbeck potential with the differential quadratic method. Applied Math. Comput., 194: 243-249.
    CrossRef  |  Direct Link  |  
  18. Zerarka, A., N. Khelil and H. Saidi, 2006. A generalised integral quadratic method: improvement of the solution for one dimensional Volterra integral equation using particle swarm optimisation. Int. J. Simul. Process Modell., 2: 85-91.
    CrossRef  |  Direct Link  |  
  19. Zerarka, A., K. Mahboub and V.G. Foester, 2006. Determination of the mean fission lifetime by using the one-dimensional Langevin equation. Int. J. Nucl. Energy Sci. Technol., 2: 342-351.
    CrossRef  |  Direct Link  |  
  20. Zerarka, A., H. Saidi, S. Hassouni and N. Bensalah, 2006. Evaluation of the bound states of a quantum system via the differential quadrature method: Extended to coupled differential equations. Applied Math. Comput., 182: 665-671.
    CrossRef  |  Direct Link  |  
  21. Saidi, H., N. Khelil, S. Hassouni and A. Zerarka, 2006. Energy spectra of the Schrodinger equation and the differential quadrature method: Improvement of the solution using particle swarm optimization. Applied Math. Comput., 182: 559-566.
    CrossRef  |  Direct Link  |  
  22. Nine, B., O. Haif-Khaif and A. Zerarka, 2006. The eigenenergies of the wave function through the non-variational Galerkin-B-spline approach. Applied Math. Comput., 178: 486-492.
    CrossRef  |  Direct Link  |  
  23. Khelil, N., N. Bensalah, H. Saidi and A. Zerarka, 2006. Artificial perturbation for solving the Korteweg-de Vries equation. J. Zhejiang Univ.-Sci. A, 7: 2079-2082.
    CrossRef  |  Direct Link  |  
  24. Zerarka, A., S. Hassouni, H. Saidi and Y. Boumedjane, 2005. Energy spectra of the Schrodinger equation and the differential quadrature method. Commun. Nonlinear Sci. Numer. Simul., 10: 737-745.
    CrossRef  |  Direct Link  |  
  25. Zerarka, A., N. Bensalah and J. Hans, 2005. Inverse potential scattering problem and its application to the Na-He system. Theoret. Math. Phys., 142: 470-480.
    CrossRef  |  Direct Link  |  
  26. Zerarka, A. and V.G. Foester, 2005. Separation method for solving the generalized Korteweg-de Vries equation. Commun. Nonlinear Sci. Numer. Simul., 10: 217-225.
    CrossRef  |  Direct Link  |  
  27. Zerarka, A. and A. Soukeur, 2005. A generalized integral quadratic method: I. An efficient solution for one-dimensional Volterra integral equation. Commun. Nonlinear Sci. Numer. Simul., 10: 653-663.
    CrossRef  |  Direct Link  |  
  28. Mahboub, K., A. Zerarka and V.G. Foester, 2005. Fusion of heavy ions by means of the Langevin equation. Phys. Rev. C, Vol. 71, No. 6. 10.1103/PhysRevC.71.064609.
    CrossRef  |  Direct Link  |  
  29. Hassouni, S., H. Saidi, Y. Boumedjane and A. Zerarka, 2005. The bound states for the non polynomial potential via the generalized differential quadratic method. Courrier du Savoir, 6: 39-41.
    Direct Link  |  
  30. Zerarka, A. and V.G. Foester, 2004. Transfer-excitation cross section in the independent electron model at high velocities: S15++H collision. J. Quant. Spectrosc. Radiat. Transfer, 86: 151-159.
    CrossRef  |  Direct Link  |  
  31. Zerarka, A., Y. Boumedjane and J. Hans, 2002. Inverted potential by the phase-integral method: He-Na elastic scattering. Phys. Rev. A, Vol. 66, No. 5. 10.1103/PhysRevA.66.052717.
    CrossRef  |  Direct Link  |  
  32. Zerarka, A. and Y. Boumedjane, 2002. Potential identification by inverse scattering theory. Int. J. Theoret. Phys., 41: 1745-1753.
    CrossRef  |  Direct Link  |  
  33. Bachau, H., R. Gayet, J. Hanssen and A. Zerarka, 1992. Transfer and excitation in ion-atom collisions at high impact velocities: A unified continuum distorted wave treatment of resonant and non-resonant modes in a four-body approach. II. Application to the collision S15+(1s)+H(1s). J. Phys. B: Atom. Mol. Opt. Phys., 25: 839-852.
    CrossRef  |  Direct Link  |