Dr. Zhenyu  Sun
My Social Links

Dr. Zhenyu Sun

Professor
Beijing University of Chemical Technology, China


Highest Degree
Ph.D. in Physical Chemistry from Chinese Academy of Sciences, China

Share this Profile

Biography

Dr. Zhenyu Sun holds a position of Professor at Beijing University of Chemical Technology, China. He has completed his Ph.D. in Physical Chemistry from Institute of Chemistry, Chinese Academy of Sciences, Postdoctoral Fellow in Analytical Chemistry from Center for Electrochemical Sciences (CES), Ruhr University Bochum, Germany, University of Oxford, UK and Trinity College Dublin, Ireland. Dr. Zhenyu Sun has co-authored 74 peer reviewed papers (including 31 papers as the first author and/or corresponding author, and 2 papers as equally contributing author) in international journals such as Nature Nanotechnology, Journal of the American Chemical Society, Angewandte Chemie International Edition, Advanced Materials, Advanced Functional Materials, Advanced Energy Materials from 2004 to date and also an inventor on 2 patents. Dr. Zhenyu received honors includes Alexander Humboldt Fellowship for Experienced Researcher, and Chinese Researcher Representative Award for the attendance of the 56th Nobel Laureate Conference in Chemistry held in Lindau, Germany. His main area of research interest focuses on Physical Chemistry of Carbon Nanostructures (carbon nanotubes and graphene) involving their Exfoliation, Dispersion and Fictionalization, and controlled synthesis and rational design of Carbon Nanostructure supported catalysts through new schemes for heterogeneous catalysis (i.e. CO2 hydrogenation) and electro catalysis (i.e. CO2 electrochemical reduction) as well as the fundamental understanding of reaction mechanism.

Area of Interest:

Physical Science Engineering
100%
Physical Chemistry
62%
Carbon Nanostructures
90%
Controlled Synthesis
75%
Heterogeneous Catalysis
55%

Research Publications in Numbers

Books
0
Chapters
0
Articles
0
Abstracts
0

Selected Publications

  1. Masa, J., P. Weide, D. Peeters, I. Sinev and W. Xia et al., 2016. Amorphous cobalt boride (Co2B) as a highly efficient nonprecious catalyst for electrochemical water splitting: Oxygen and hydrogen evolution. Adv. Energy Mater., Vol. 6. 10.1002/aenm.201502313.
    CrossRef  |  Direct Link  |  
  2. Liu, G., H. Ma, I. Teixeira, Z. Sun, Q.N. Xia, X.L. Hong and S.C.E. Tsang, 2016. Hydrazine-assisted liquid exfoliation of MoS2 for catalytic hydrodeoxygenation of 4-methylphenol. Chem. Eur. J., 22: 2910-2914.
    CrossRef  |  Direct Link  |  
  3. Wei, Y. and Z. Sun, 2015. Liquid-phase exfoliation of graphite for mass production of pristine few-layer graphene. Curr. Opin. Colloid Interface Sci., 20: 311-321.
    CrossRef  |  Direct Link  |  
  4. Sun, Z., J. Masa, P. Weide, S.M. Fairclough and A.W. Robertson et al., 2015. High-quality functionalized few-layer graphene: Facile fabrication and doping with nitrogen as a metal-free catalyst for the oxygen reduction reaction. J. Mater. Chem. A, 3: 15444-15450.
    CrossRef  |  Direct Link  |  
  5. Sun, Z., E. Madej, C. Wiktor, I. Sinev and R.A. Fischer et al., 2015. One-pot synthesis of carbon-coated nanostructured iron oxide on few-layer graphene for lithium-ion batteries. Chem. Eur. J., 21: 16154-16161.
    CrossRef  |  Direct Link  |  
  6. Sun, Z., X. Huang, M. Muhler, W. Schuhmann and E. Ventosa, 2014. A carbon-coated TiO2 (B) nanosheet composite for lithium ion batteries. Chem. Commun., 50: 5506-5509.
    CrossRef  |  Direct Link  |  
  7. Sun, Z., X. Huang, F. Liu, X. Yang and C. Rosler et al., 2014. Amine-based solvents for exfoliating graphite to graphene outperform the dispersing capacity of N-methyl-pyrrolidone and surfactants. Chem. Commun., 50: 10382-10385.
    CrossRef  |  Direct Link  |  
  8. Sun, Z., K. Xie, Z.A. Li, I. Sinev and P. Ebbinghaus et al., 2014. Hollow and yolk-shell iron oxide nanostructures on few-layer graphene in Li-Ion batteries. Chem. Eur. J., 20: 2022-2030.
    CrossRef  |  Direct Link  |  
  9. Sun, Z., J. Vivekananthan, D.A. Guschin, X. Huang and V. Kuznetsov et al., 2014. High-concentration graphene dispersions with minimal stabilizer: A scaffold for enzyme immobilization for glucose oxidation. Chem. Eur. J., 20: 5752-5761.
    CrossRef  |  Direct Link  |  
  10. Masa, J., W. Xia, I. Sinev, A.Q. Zhao and Z.Y. Sun et al., 2014. MnxOy/NC and CoxOy/NC nanoparticles embedded in a nitrogen-doped carbon matrix for high-performance bifunctional oxygen electrodes. Angewandte Chemie Int. Edn., 53: 8508-8512.
    CrossRef  |  Direct Link  |  
  11. Sun, Z., S. Poller, X. Huang, D. Guschin and C. Taetz et al., 2013. High-yield exfoliation of graphite in acrylate polymers: A stable few-layer graphene nanofluid with enhanced thermal conductivity. Carbon, 64: 288-294.
    CrossRef  |  Direct Link  |  
  12. Sun, Z., N. Dong, K. Xie, W. Xia and D. Konigs et al., 2013. Nanostructured few-layer graphene with superior optical limiting properties fabricated by a catalytic steam etching process. J. Phys. Chem. C, 117: 11811-11817.
    CrossRef  |  Direct Link  |  
  13. Sun, Z., N. Dong, K. Wang, D. Konig and T.C. Nagaiah et al., 2013. Ag-stabilized few-layer graphene dispersions in low boiling point solvents for versatile nonlinear optical applications. Carbon, 62: 182-192.
    CrossRef  |  Direct Link  |  
  14. Sun, Z., J. Masa, Z. Liu, W. Schuhmann and M. Muhler, 2012. Highly concentrated aqueous dispersions of graphene exfoliated by sodium taurodeoxycholate: Dispersion behavior and potential application as a catalyst support for the oxygen-reduction reaction. Chem. Eur. J., 18: 6972-6978.
    CrossRef  |  Direct Link  |  
  15. Sun, Z., J. Masa, W. Xia, D. Konigs and A. Ludwig et al., 2012. Rapid and surfactant-free synthesis of bimetallic Pt-Cu nanoparticles simply via ultrasound-assisted redox replacement. ACS Catal., 2: 1647-1653.
    CrossRef  |  Direct Link  |  
  16. Sun, Z., Z. Li, C. Huang, Y. Zhao, H. Zhang, R. Tao and Z. Liu, 2011. Ultrasonication-assisted uniform decoration of carbon nanotubes by various particles with controlled size and loading. Carbon, 49: 4376-4384.
    CrossRef  |  Direct Link  |  
  17. Sun, Z., H. Zhang, Y. Zhao, C. Huang, R. Tao, Z. Liu and Z. Wu, 2011. Thermal-stable carbon nanotube-supported metal nanocatalysts by mesoporous silica coating. Langmuir, 27: 6244-6251.
    CrossRef  |  Direct Link  |  
  18. Zhang, H., Y. Xie, Z. Sun, R. Tao, C. Huang, Y. Zhao and Z. Liu, 2010. In-situ loading ultrafine AuPd particles on ceria: Highly active catalyst for solvent-free selective oxidation of benzyl alcohol. Langmuir, 27: 1152-1157.
    CrossRef  |  Direct Link  |  
  19. Xie, Y., K. Ding, Z. Liu, J. Li and G. An et al., 2010. The immobilization of glycidyl-group-containing ionic liquids and its application in CO2 cycloaddition reactions. Chem. Eur. J., 16: 6687-6692.
    CrossRef  |  Direct Link  |  
  20. Wang, J., D. Fruchtl, Z. Sun, J.N. Coleman and W.J. Blau, 2010. Control of optical limiting of carbon nanotube dispersions by changing solvent parameters. J. Phys. Chem. C, 114: 6148-6156.
    CrossRef  |  Direct Link  |  
  21. Sun, Z., Y. Zhao, Y. Xie, R. Tao, H. Zhang, C. Huang and Z. Liu, 2010. The solvent-free selective hydrogenation of nitrobenzene to aniline: An unexpected catalytic activity of ultrafine Pt nanoparticles deposited on carbon nanotubes. Green Chem., 12: 1007-1011.
    CrossRef  |  Direct Link  |  
  22. Sun, Z., X. Wang, Z. Liu, H. Zhang, P. Yu and L. Mao, 2010. Pt-Ru/CeO2/carbon nanotube nanocomposites: an efficient electrocatalyst for direct methanol fuel cells. Langmuir, 26: 12383-12389.
    CrossRef  |  Direct Link  |  
  23. Sun, Z., H. Zhang, G. An, G. Yang and Z. Liu, 2010. Supercritical CO2-facilitating large-scale synthesis of CeO2 nanowires and their application for solvent-free selective hydrogenation of nitroarenes. J. Mater. Chem., 20: 1947-1952.
    CrossRef  |  Direct Link  |  
  24. Ding, K., Z. Miao, B. Hu, G. An, Z. Sun, B. Han and Z. Liu, 2010. Study on the anatase to rutile phase transformation and controlled synthesis of rutile nanocrystals with the assistance of ionic liquid. Langmuir, 26: 10294-10302.
    CrossRef  |  Direct Link  |  
  25. Bergin, S.D., Z. Sun, P. Streich, J. Hamilton and J. Coleman, 2010. New solvents for nanotubes: Approaching the dispersibility of surfactants. J. Phys. Chem. C, 114: 231-237.
    CrossRef  |  Direct Link  |  
  26. Xie, Y., K.L. Ding, Z.M. Liu, R.T. Tao, Z.Y. Sun, H.Y. Zhang and G.M. An, 2009. In situ controllable loading of ultrafine noble metal particles on titania. J. Am. Chem. Soc., 131: 6648-6649.
    CrossRef  |  Direct Link  |  
  27. Sun, Z., I. O'Connor, S.D. Bergin and J.N. Coleman, 2009. Effects of ambient conditions on solvent-nanotube dispersions: Exposure to water and temperature variation. J. Phys. Chem. C, 113: 1260-1266.
    CrossRef  |  Direct Link  |  
  28. Ding, K., Z. Miao, B. Hu, G. An, Z. Sun, B. Han and Z. Liu, 2009. Shape and size controlled synthesis of anatase nanocrystals with the assistance of ionic liquid. Langmuir, 26: 5129-5134.
    CrossRef  |  Direct Link  |  
  29. Bergin, S.D., Z. Sun, D. Rickard, P.V. Streich, J.P. Hamilton and J.N. Coleman, 2009. Multicomponent solubility parameters for single-walled carbon nanotube-solvent mixtures. ACS Nano, 3: 2340-2350.
    CrossRef  |  Direct Link  |  
  30. Sun, Z., V. Nicolosi, S.D. Bergin and J.N. Coleman, 2008. Efficient dispersion and exfoliation of single-walled nanotubes in 3-aminopropyltriethoxysilane and its derivatives. Nanotechnology, Vol. 19. .
    Direct Link  |  
  31. Sun, Z., V. Nicolosi, D. Rickard, S.D. Bergin, D. Aherne and J.N. Coleman, 2008. Quantitative evaluation of surfactant-stabilized single-walled carbon nanotubes: Dispersion quality and its correlation with zeta potential. J. Phys. Chem. C, 112: 10692-10699.
    CrossRef  |  Direct Link  |  
  32. Hernandez, Y., V. Nicolosi, M. Lotya, F.M. Blighe and Z. Sun et al., 2008. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol., 3: 563-568.
    CrossRef  |  Direct Link  |  
  33. Bergin, S.D., V. Nicolosi, P.V. Streich, S. Giordani and Z. Sun et al., 2008. Towards solutions of single‐walled carbon nanotubes in common solvents. Adv. Mater., 20: 1876-1881.
    CrossRef  |  Direct Link  |  
  34. Bergin, S.D., V. Nicolosi, H. Cathcart, M. Lotya and D. Rickard et al., 2008. Large populations of individual nanotubes in surfactant-based dispersions without the need for ultracentrifugation. J. Phys. Chem. C, 112: 972-977.
    CrossRef  |  Direct Link  |  
  35. Sun, Z., X. Zhang, B. Han, Y. Wu and G. An et al., 2007. Coating carbon nanotubes with metal oxides in a supercritical carbon dioxide-ethanol solution. Carbon, 45: 2589-2596.
    CrossRef  |  Direct Link  |  
  36. An, G., W. Ma, Z. Sun, Z. Liu and B. Han et al., 2007. Preparation of titania/carbon nanotube composites using supercritical ethanol and their photocatalytic activity for phenol degradation under visible light irradiation. Carbon, 45: 1795-1801.
    CrossRef  |  Direct Link  |  
  37. An, G., P. Yu, L. Mao, Z. Sun and Z. Liu et al., 2007. Synthesis of PtRu/carbon nanotube composites in supercritical fluid and their application as an electrocatalyst for direct methanol fuel cells. Carbon, 45: 536-542.
    CrossRef  |  Direct Link  |  
  38. Sun, Z., Z. Sun, Z. Liu, B. Han, S. Miao, J. Du and Z. Miao, 2006. Microstructural and electrochemical characterization of RuO2/CNT composites synthesized in supercritical diethyl amine. Carbon, 44: 888-893.
    CrossRef  |  Direct Link  |  
  39. Sun, Z., X. Zhang, N. Na, Z. Liu, B. Han and G. An, 2006. Synthesis of ZrO2-carbon nanotube composites and their application as chemiluminescent sensor material for ethanol. J. Phys. Chem. B, 110: 13410-13414.
    CrossRef  |  Direct Link  |  
  40. Miao, S., Z. Liu, B. Han, J. Huang, Z. Sun, J. Zhang and T. Jiang, 2006. Ru nanoparticles immobilized on montmorillonite by ionic liquids: A highly efficient heterogeneous catalyst for the hydrogenation of benzene. Angewandte Chemie Int. Edn., 45: 266-269.
    CrossRef  |  Direct Link  |  
  41. Wang, Y., Z. Liu, B. Han, Z. Sun, Y. Huang and G. Yang, 2005. Facile synthesis of polyaniline nanofibers using chloroaurate acid as the oxidant. Langmuir, 21: 833-836.
    CrossRef  |  Direct Link  |  
  42. Wang, Y., Z. Liu, B. Han, Z. Sun, J. Zhang and D. Sun, 2005. Phase-separation-induced micropatterned polymer surfaces and their applications. Adv. Funct. Mater., 15: 655-663.
    CrossRef  |  Direct Link  |  
  43. Wang, Y., Z. Liu, B. Han, Z. Sun and J. Du et al., 2005. Replication of biological organizations through a supercritical fluid route. Chem. Commun., 23: 2948-2950.
    CrossRef  |  Direct Link  |  
  44. Sun, Z., Z. Liu, Y. Wang, B. Han, J. Du and J. Zhang, 2005. Fabrication and characterization of magnetic carbon nanotube composites. J. Mater. Chem., 15: 4497-4501.
    CrossRef  |  Direct Link  |  
  45. Sun, Z., Z. Liu, B. Han, Y. Wang, J. Du, Z. Xie and G. Han, 2005. Fabrication of ruthenium-carbon nanotube nanocomposites in supercritical water. Adv. Mater., 17: 928-932.
    CrossRef  |  Direct Link  |  
  46. Sun, Z., H. Yuan, Z. Liu, B. Han and X. Zhang, 2005. A highly efficient chemical sensor material for H2S: α-Fe2O3 nanotubes fabricated using carbon nanotube templates. Adv. Mater., 17: 2993-2997.
    CrossRef  |  Direct Link  |  
  47. Du, J., L. Fu, Z. Liu, B. Han and Z. Li et al., 2005. Facile route to synthesize multiwalled carbon nanotube/zinc sulfide heterostructures: Optical and electrical properties. J. Phys. Chem. B, 109: 12772-12776.
    CrossRef  |  Direct Link  |  
  48. Sun, Z., Z. Liu, J.Du, Y. Wang, B. Han and T. Mu, 2004. Synthesis of tubular graphite cones through a catalytically thermal reduction route. J. Phys. Chem. B, 108: 9811-9814.
    CrossRef  |  Direct Link  |  
  49. Dai, X., Z. Liu, B. Han, Z. Sun and Y. Wang et al., 2004. Carbon nanotube/poly(2,4-hexadiyne-1,6-diol) nanocomposites prepared with the aid of supercritical CO2. Chem. Commun., 19: 2190-2191.
    CrossRef  |  Direct Link  |