Dr. Ali Nazari
My Social Links

Dr. Ali Nazari

Assistant Professor
Islamic Azad University, Iran


Highest Degree
Ph.D. in Materials Science and Engineering from Islamic Azad University, Parand, Iran

Share this Profile

Area of Interest:

Physical Science Engineering
100%
Material Science
62%
Modelling and Simulation
90%
Composite Materials
75%
Damage and Applied Mechanics
55%

Research Publications in Numbers

Books
1
Chapters
4
Articles
196
Abstracts
1

Selected Publications

  1. Nazari, A., 2012. Simulation Charpy impact energy of functionally graded steels by modified stress-strain curve through mechanism-based strain gradient plasticity theory. Comp. Mat. Sci., 51: 225-232.
    CrossRef  |  
  2. Nazari, A., 2012. Application of strain gradient plasticity theory to model Charpy impact energy of functionally graded steels using modified stress-strain curve data. Comp. Mat. Sci., 51: 281-289.
  3. .
  4. Nazari, A., S. Riahi and A. Bagheri, 2011.. Designing water resistant lightweight geopolymers produced from waste materials. Mat. Design. 10.1016/j.matdes.2011.09.016.
    CrossRef  |  
  5. Riahi, S., A. Nazari and D. Ghasemi, 2011. Prediction resistance to water damage of geopolymers with seeded fly ash and rice husk bark ash by fuzzy logic. Int. J. Damage. Mech. 10.1177/1056789511419984.
    CrossRef  |  
  6. Riahi, S. and A. Nazari, 2011. Physical, mechanical and thermal properties of concrete in different curing media containing ZnO2 nanoparticles. Energy Buildings, 43: 1977-1984.
  7. Nazari. A., 2011. Modeling fracture toughness of ferritic and austenitic functionally graded steel based on the strain gradient plasticity theory. Computational Mat. Sci., 50: 3223-3244.
  8. Nazari, A., M.H. Rafieipour and S. Riahi, 2011. The effects of CuO nanoparticles on properties of self compacting concrete with GGBFS as binder. Mat. Res., Vol. 14. .
  9. Nazari, A., J.M. Aghazadeh and S. Riahi, 2011. The effect of layers position on fracture toughness of functionally graded steels in crack divider configuration. J. Mater. Sci. Technol., Vol. 27. .
  10. Nazari, A., J.M. Aghazadeh and S. Riahi, 2011. Modeling fracture toughness of functionally graded steels in crack arrester configuration. Computational Mat. Sci., 50: 1578-1586.
  11. Nazari, A., J.M. Aghazadeh and S. Riahi, 2011. Modeling Impact Energy of Functionally Graded Steels in Crack Divider Configuration Using Modified Stress-Strain Curve Data. Int. J. Damage Mech. 10.1177/1056789510397073.
    CrossRef  |  
  12. Nazari, A., J.M. Aghazadeh and S. Riahi, 2011. Fracture toughness of functionally graded steels. J. Mat. Eng. Perform, 10.1007/s11665-011-9945-9.
    CrossRef  |  
  13. Nazari, A., J.A. Mohandesi, M.H. Vishkasogheh and M. Abedi, 2011. Simulation of impact energy in functionally graded steels. Comput. materials sci., 50: 1187-1196.
  14. Nazari, A., G. Khalaj and N. Didehvar, 2011. Computational Investigations of the Impact Resistance of Aluminum-Epoxy-Laminated Composites. Int. J. Damage Mech. 10.1177/1056789511411739.
    CrossRef  |  
  15. Nazari, A., A.A. Milani and M. Zakeri, 2011. Modeling Ductile to brittle transition temperature of functionally graded steels by artificial neural networks. Computational Mat. Sci., 50: 2028-2037.
    CrossRef  |  
  16. Nazari, A., A. Sedghi and N. Didehvar, 2011. Modeling impact resistance of aluminum-epoxy laminated composites by artificial neural networks. J. Compos. Mat. 10.1177/0021998311421222.
    CrossRef  |  
  17. Nazari, A., A. Bagheri and S. Riahi, 2011. Properties of geopolymer with seeded fly ash and rice husk bark ash. Mat. Sci. Eng. A, 10.1016/j.msea.2011.06.027.
    CrossRef  |  
  18. Nazari, A., 2011. The effects of curing medium on flexural strength and water permeability of concrete incorporating TiO2 nanoparticles. Mater Struct., 44: 773-786.
  19. Nazari, A., 2011. Strain gradient plasticity theory for modeling JIC of functionally graded steels. Computational Mat. Sci, 10.1016/j.commatsci.2011.06.038.
    CrossRef  |  
  20. Nazari, A., 2011. Simulation of impact energy in functionally graded steels by mechanism-based strain gradient plasticity theory. Computational Mat Sci, 10.1016/j.commatsci.2011.07.010.
    CrossRef  |  
  21. Nazari, A., 2011. Application of strain gradient plasticity theory to model Charpy impact energy of functionally graded steels. Computational Mat. Sci. 10.1016/j.commatsci.2011.06.039.
    CrossRef  |  
  22. Nazari, A., 2011. Analytical modeling of Charpy impact energy of functionally graded steels by ANFIS. Int. J. Damage Mech. .
  23. Nazari, A., 2011. Strain gradient plasticity theory to predict the input data for modeling of Charpy impact energy in functionally graded steels. Computational Mat. Sci. 10.1016/j.commatsci.2011.07.007.
    CrossRef  |  
  24. Nazari, A., 2011. Modeling Charpy impact energy of functionally graded steel based on the strain gradient plasticity theory and modified stress-strain curve data. Computational Mat. Sci, 10.1016/j.commatsci.2011.06.029.
    CrossRef  |  
  25. Nazari, A. and S.M. Mojtahed Najafi, 2011. Prediction impact behavior of functionally graded steel by strain gradient plasticity theory. Computational Mat. Sci., 50: 3218-3223.
  26. Nazari, A. and S.M. Mojtahed Najafi, 2011. Prediction Charpy impact energy of bcc and fcc functionally graded steels in crack divider configuration by strain gradient plasticity theory. Computational mat. Sci., 50: 3178-3183.
  27. Nazari, A. and S. Riahi. 2011. The effects of limewater on split tensile strength and workability of Al2O3 nanoparticles binary blended concrete. J. Compos. Mater, 45: 1059-1064.
    Direct Link  |  
  28. Nazari, A. and S. Riahi, 2011. TiO2 nanoparticles effects on physical, thermal and mechanical properties of self compacting concrete with ground granulated blast furnace slag as binder. Energy Buildings, 43: 995-1002.
  29. Nazari, A. and S. Riahi, 2011. The role of SiO2 nanoparticles and ground granulated blast furnace slag admixtures on physical, thermal and mechanical properties of self compacting concrete. Mater Sci. Eng. A, 528: 2149-2157.
  30. Nazari, A. and S. Riahi, 2011. The effects of zinc dioxide nanoparticles on flexural strength of self-compacting concrete. Composites Part B: Enginee., 42: 167-175.
  31. Nazari, A. and S. Riahi, 2011. The effects of limewater on flexural strength and water permeability of Al2O3 nanoparticles binary blended concrete. J. Compos. Mater, 45: 1059-1064.
  32. Nazari, A. and S. Riahi, 2011. The effects of curing medium on the flexural strength and water permeability of cementitious composites containing Fe2O3 nanofillers. Int. J. Mate. Res. .
  33. Nazari, A. and S. Riahi, 2011. The effects of ZrO2 nanoparticles on strength assessments and water permeability of concrete in different curing media J. Exp. Nanoscience. 10.1080/17458080.2011.586369.
    CrossRef  |  Direct Link  |  
  34. Nazari, A. and S. Riahi, 2011. The effects of ZnO2 nanoparticles on strength assessments and water permeability of concrete in different curing media. Mat. Res., 14: 1-11.
  35. Nazari, A. and S. Riahi, 2011. The effects of ZnO2 nanoparticles on properties of concrete using ground granulated blast furnace slag as binder. Mat. Res., Vol. 14. .
  36. Nazari, A. and S. Riahi, 2011. The effects of TiO2 nanoparticles on properties of binary blended concrete. J. Compos. Mater, 45: 1181-1188.
    Direct Link  |  
  37. Nazari, A. and S. Riahi, 2011. The effects of SnO2‏ nanoparticles on physical and mechanical properties of high strength self compacting concrete. J. Exp Nanosci. 10.1080/17458080.2010.543991.
    CrossRef  |  
  38. Nazari, A. and S. Riahi, 2011. The effects of SiO2 nanoparticles on physical and mechanical properties of high strength self compacting concrete. Composites Part B: Engineering, 42: 570-578.
  39. Nazari, A. and S. Riahi, 2011. The effects of Cr2O3 nanoparticles on strength assessments and water permeability of concrete in different curing media. Mater Sci. Eng. A, 528: 1173-1182.
  40. Nazari, A. and S. Riahi, 2011. The effects of Al2O3‏ nanoparticles on properties of concrete using ground granulated blast furnace slag as binder. Cement Wapno Beton. .
  41. Nazari, A. and S. Riahi, 2011. Splitting tensile strength of concrete using ground granulated blast furnace slag and SiO2 nanoparticles as binder. Energy Buildings, 43: 864-872.
  42. Nazari, A. and S. Riahi, 2011. Prediction physical and mechanical properties of high strength concrete containing CuO nanoparticles by artificial neural network and genetic programming. Int. J. Damage Mech. 10.1177/1056789510397079.
    CrossRef  |  
  43. Nazari, A. and S. Riahi, 2011. Optimizing mechanical properties of binary blended concrete utilizing CuO nanoparticles. Int. J. Damage Mech, 10.1177/1056789510397074.
    CrossRef  |  
  44. Nazari, A. and S. Riahi, 2011. Optimization mechanical properties of Cr2O3 nanoparticle binary blended cementitious composite. J. Compos. Mater, 45: 943-948.
  45. Nazari, A. and S. Riahi, 2011. Optimization ZnO2 nanoparticles content in binary blended concrete to enhance high strength concrete. Int. J. Mat. Res., 102: 457-463.
  46. Nazari, A. and S. Riahi, 2011. Limewater effects on properties of ZrO2 blended cementitious composite. J. Compos. Mater, 45: 639-644.
  47. Nazari, A. and S. Riahi, 2011. Experimental investigations and ANFIS prediction of water absorption of geopolymers produced by waste ashes. J. Non-crystal Sol. 10.1016/j.jnoncrysol.2011.08.022.
    CrossRef  |  
  48. Nazari, A. and S. Riahi, 2011. Effects of CuO Nanoparticles on Microstructure, Physical, Mechanical and Thermal Properties of Self-Compacting Cementitious Composites. J. Mater. Sci. Technol., 27: 81-92.
  49. Nazari, A. and S. Riahi, 2011. Effects of Al2O3 nanoparticles on properties of self compacting concrete with ground granulated blast furnace slag (GGBFS) as binder. Sci. China Technol. Sci., 54: 2327-2338.
    CrossRef  |  
  50. Nazari, A. and S. Riahi, 2011. CuO nanoparticles' effects on compressive strength of self compacting concrete. Sadhana - Acad. Proceed. Eng. Sci., 36: 371-391.
  51. Nazari, A. and S. Riahi, 2011. Computer-aided design of the effects of Fe2O3 nanoparticles on split tensile strength and water permeability of high strength concrete. Mat. Design, 32: 3966-3979.
    CrossRef  |  
  52. Nazari, A. and S. Riahi, 2011. Computer-aided design of the effects of Cr2O3 nanoparticles on split tensile strength and water permeability of high strength concrete. Sci. China Technol. Sci., 54: 663-675.
  53. Nazari, A. and S. Riahi, 2011. Compressive strength and abrasion resistance of concrete containing SiO2 and CuO nanoparticles in different curing media. Sci. China Technol. Sci., 54: 2349-2357.
    CrossRef  |  
  54. Nazari, A. and S. Riahi, 2011. Assessment of the effects of Fe2O3 nanoparticles on water permeability, workability, and setting time of concrete. J. Compos. Mater, 45: 923-930.
  55. Nazari, A. and S. Riahi, 2011. Al2O3 nanoparticles in concrete and different curing media. Energy Buildings, 43: 1480-1488.
  56. Nazari, A. and S. Riahi, 2011. Abrasion resistance of concrete containing SiO2 and Al2O3 nanoparticles in different curing media. Energy Build, 43: 2939-2946.
    CrossRef  |  
  57. Nazari, A. and S. Riahi, 2011. TiO2 nanoparticles effects on properties of concrete using ground granulated blast furnace slag as binder. Sci. China Technol. Sci., 10.1007/s11431-011-4421-1.
    CrossRef  |  
  58. Nazari, A. and S. Riahi, 2011. Prediction split tensile strength and water permeability of high strength concrete containing TiO2 nanoparticles by artificial neural network and genetic programming. Composites Part B Eng., 42: 473-488.
  59. Nazari, A. and S. Riahi, 2011. Improvement compressive strength of cementitious composites in different curing media by Al2O3 nanoparticles. Mater Sci. Eng. A, 528: 1183-1191.
  60. Nazari, A. and N. Didehvar, 2011. Modeling impact resistance of aluminum-epoxy laminated composites by ANFIS. Composites Part B Eng. 10.1016/j.compositesb.2011.05.043.
    CrossRef  |  
  61. Nazari, A. and A.A. Milani, 2011. Modeling Ductile to brittle transition temperature of functionally graded steels by gene expression programming. Int. J. Damage Mech. 10.1177/1056789511406561.
    CrossRef  |  
  62. Nazari, A. and A.A. Milani, 2011. Ductile to brittle transition temperature of functionally graded steels. Int. J. Damage Mech. 10.1177/1056789511398270.
    CrossRef  |  
  63. Nazari, A. and A.A. Milani, 2011. Ductile to brittle transition temperature of functionally graded steels in crack arrester configuration. Mat. Sci. Eng. A, 528: 3854-3859.
  64. Nazari, A. and A.A. Milani, 2011. Modeling Ductile to brittle transition temperature of functionally graded steels by fuzzy logic. J. Mat. Sci., 46: 6007-6017.
  65. Nazari, A. J.M. Aghazadeh and S. Tavareh, 2011. Modeling tensile strength of austenitic graded steel based on the strain gradient plasticity theory. Computational Mat. Sci., 50: 1791-1794.
    CrossRef  |  
  66. Nazari, A. J.M. Aghazadeh and S. Tavareh, 2011. Microhardness profile prediction of a graded steel by strain gradient plasticity theory. Computational Mat. Sci., 50: 1781-1784.
    CrossRef  |  
  67. Nazari, A. and S. Riahi, 2011. TiO2 nanoparticles' effects on properties of self compacting concrete. Cement Wapno Beton, 3: 167-182.
  68. Nazari, A. and S. Riahi, 2011. The effects of Cr2O3 nanoparticles on properties of self compacting concrete with GGBFS as binder. Magazine Concrete Res. .
  69. Nazari, A. and S. Riahi, 2011. The effect of Al2O3 nanoparticles on the compressive strength and structure of self-compacting concrete. Magazine Concrete Res. .
  70. Nazari, A. and S. Riahi, 2011. The Effects of ZrO2 Nanoparticles on Properties of Concrete Using Ground Granulated Blast Furnace Slag as Binder. J. Compos. Mater. 10.1177/002199311414944.
    CrossRef  |  
  71. Nazari, A. and S. Riahi, 2011. Physical and mechanical behavior of high strength self compacting concrete containing ZrO2 nanoparticles. Int. J. Mat. Res., 102: 560-571.
    Direct Link  |  
  72. Nazari, A. and S. Riahi, 2011. Computer-aided prediction of the Al2O3 nanoparticles' effects on tensile strength and percentage of water absorption of concrete specimens. Neural Comp. Appl. 10.1007/s00521-011-0700-9.
    CrossRef  |  
  73. Nazari, A. and J.M. Aghazadeh, 2011. Modeling tensile strength of oblique layer functionally graded austenitic steel. Comput. Mat. Sci., 50: 1425-1431.
  74. Aghazadeh, J.M., A.S. Ghaleh and A. Nazari, 2011. Strength assessment and bonding study of aluminum short fiber reinforced gypsum composites. Int. J. Damage Mech. 10.1177/1056789510397075.
    CrossRef  |  
  75. Aghazadeh, J.M., A. Sangghaleh, A. Nazari and N. Pourjavad, 2011. Analytical modeling of strength in randomly oriented PP and PPTA short fiber reinforced gypsum composites. Computational Mat. Sci., 50: 1619-1624.
  76. .
  77. Mohandesi, J.A., A. Nazari, M.H. Vishkasogheh and M. Abedi, 2010.. Modeling fracture toughness of functionally graded steels in crack divider configuration. Modelling Simul. Mater. Sci. Eng., .
  78. Nazari, A., S. Riahi, S. Riahi, S.F. Shamekhi and A. Khademno, 2010. The effects of incorporation Fe2O3 nanoparticles on tensile and flexural strength of concrete. J. Am. Sci., 6: 90-93.
  79. Nazari, A., S. Riahi, S. Riahi, S.F. Shamekhi and A. Khademno, 2010. Improvement the mechanical properties of the cementitious composite by using TiO2 nanoparticles. J. Am. Sci., 6: 98-101.
  80. Nazari, A., S. Riahi, S. Riahi, S.F. Shamekhi and A. Khademno, 2010. Embedded ZrO2 nanoparticles mechanical properties monitoring in cementitious composites. J. Am. Sci., 6: 86-89.
  81. Nazari, A., S. Riahi, S. Riahi, S.F. Shamekhi and A. Khademno, 2010. Benefits of Fe2O3 nanoparticles in concrete mixing matrix. J.Am. Sci., 6: 102-106.
  82. Nazari, A., S. Riahi, S. Riahi, S.F. Shamekhi and A. Khademno, 2010. Assessment of the effects of the cement paste composite in presence TiO2 nanoparticles. J. Am. Sci., 6: 43-46.
  83. Nazari, A., S. Riahi, S. Riahi, S.F. Shamekhi and A. Khademno, 2010. An investigation on the Strength and workability of cement based concrete performance by using TiO2 nanoparticles. J. Am. Sci., 6: 29-33.
  84. Nazari, A., S. Riahi, S. Riahi, S.F. Shamekhi and A. Khademno, 2010. Mechanical properties of cement mortar with Al2O3 nanoparticles. J. Am. Sci, 6: 94-97.
  85. Nazari, A., S. Riahi, S. Riahi, S.F. Shamekhi and A. Khademno 2010. Influence of Al2O3 nanoparticles on the compressive strength and workability of blended concrete. J. Am. Sci., 6: 6-9.
  86. Nazari, A., J.M. Aghazadeh and S. Riahi, 2010. Modified Modeling Fracture Toughness of Functionally Graded Steels in Crack Divider Configuration. Int. J. Damage Mech. 10.1177/1056789510382851.
    CrossRef  |  
  87. Nazari, A. and S. Riahi, 2010. ZrO2 nanoparticles effects on split tensile strength of self compacting concrete. Mater. Res., 13: 485-495.
  88. Nazari, A. and S. Riahi, 2010. The effects of ZrO2 nanoparticles on physical and mechanical properties of high strength self compacting concrete. Mat. Res., 13: 551-556.
  89. Nazari, A. and S. Riahi, 2010. The effects of ZnO2 nanoparticles on split tensile strength of self-compacting concrete. J. Exp. Nanoscience. 10.1080/17458080.2010.524669.
    CrossRef  |  
  90. Nazari, A. and S. Riahi, 2010. The effect of TiO2 nanoparticles on water permeability and thermal and mechanical properties of high strength self-compacting concrete. Mater Sci. Eng. A., 528: 756-763.
  91. Nazari, A. and S. Riahi, 2010. The Effects of TiO2 Nanoparticles on Flexural Damage of Self-compacting Concrete. Int. J. Damage Mech. 10.1177/1056789510385262.
    CrossRef  |  
  92. Nazari, A. and S. Riahi, 2010. Failure analysis of HSLA wheel bolt steels. Multidiscipline Mod. Mat. Struc., 6: 373-382.
  93. Nazari, A. and S. Riahi, 2010. Effect of layer angle on tensile behavior of oblique layer functionally graded steels. Turk. J. Eng. Environ. Sci., 34: 17-24.
    CrossRef  |  Direct Link  |  
  94. Nazari, A. and S. Riahi, 2010. Computer-aided prediction of physical and mechanical properties of high strength cementitious composite containing Cr2O3 nanoparticles. Nano, 5: 301-318.
  95. Nazari, A. and S. Riahi, 2010. The effects of TiO2 nanoparticles on physical, thermal and mechanical properties of concrete using ground granulated blast furnace slag as binder. Mater Sci Eng A, 528: 756-763.
  96. Nazari, A. and S. Riahi, 2010. Microstructural, thermal, physical and mechanical behavior of the self compacting concrete containing SiO2 nanoparticles. Mater Sci. Eng. A., 527: 7663-7672.
  97. Nazari, A. and J.M. Aghazadeh, 2010. Modeling impact energy of functionally graded steels in crack divider configuration. Mater Sci. Tech., 26: 1377-1383.
  98. Nazari, A. and J.M. Aghazadeh, 2010. Impact Energy of Functionally Graded Steels in Crack Divider Configuration, J. Mater. Eng. Performance, 19: 1058-1064.
  99. Nazari, A. and S. Riahi, 2010. The effects of Fe2O3‏ nanoparticles on water permeability and strength assessments of high strength self compacting concrete. J. Mat. Sci. Technol. .
  100. Nazari, A. and S. Riahi, 2010. Computer-aided prediction of the ZrO2 nanoparticles' effects on tensile strength and percentage of water absorption of concrete specimens. J. Mat. Sci. Technol. .
  101. Mohandesi, J.A., A. Nazari, M.H. Vishkasogheh and M. Abedi, 2010. Modeling fracture toughness of functionally graded steels in crack divider configuration, modelling simul. Mater. Sci. Eng., 18: 075007-075007.
    CrossRef  |  
  102. Nazari, A. and J.M. Aghazadeh, 2009. Impact energy of functionally graded steels in crack divider configuration. J. Mat. Sci. Technol., 25: 847-856.
  103. Aghazadeh, J.M. and A. Nazari, 2007. Kinetics of nitriding in titanium bearing austenitic stainless steel. Multidiscipline Mod.Mat. Struc., 3: 515-526.
    Direct Link  |