Dr. Yuval  Shaked
My Social Links

Dr. Yuval Shaked

Associate Professor
Israel Institute of Technology, Israel


Highest Degree
Ph.D. in Biochemistry from Hadassah University Hospital, Jerusalem, Israel

Share this Profile

Area of Interest:

Biomedical Sciences
100%
Biological Chemistry
62%
Cancer Research
90%
Drug Delivery
75%
Stem Cells
55%

Research Publications in Numbers

Books
0
Chapters
0
Articles
0
Abstracts
0

Selected Publications

  1. Zaffryar-Eilot, S., D. Marshall, T. Voloshin, A. Bar-Zion and R. Spangler et al., 2013. Lysyl oxidase-like-2 promotes tumour angiogenesis and is a potential therapeutic target in angiogenic tumours. Carcinogenesis, 34: 2370-2379.
    CrossRef  |  
  2. Voloshin, T., E.E. Voest and Y. Shaked, 2013. The host immunological response to cancer therapy: An emerging concept in tumor biology. Exp. Cell Res., 319: 1687-1695.
    CrossRef  |  
  3. Shaked, Y., S. McAllister, O. Fainaru and N. Almog, 2013. Tumor dormancy and the angiogenic switch: Possible implications of bone marrow-derived cells. Curr. Pharm. Des. .
    Direct Link  |  
  4. Miller, K., C. Clementi, D. Polyak, A. Eldar-Boock and L. Benayoun et al., 2013. Poly(ethylene glycol)-paclitaxel-alendronate self-assembled micelles for the targeted treatment of breast cancer bone metastases. Biomaterials, 34: 3795-3806.
    CrossRef  |  
  5. Loven, D., E. Hasnis, F. Bertolini and Y. Shaked, 2013. Low-dose metronomic chemotherapy: From past experience to new paradigms in the treatment of cancer. Drug Discovery Today, 18: 193-201.
    CrossRef  |  
  6. Fremder, E., M. Munster, A. Aharon, V. Miller and S. Gingis-Velitski et al., 2013. Tumor-derived microparticles induce bone marrow-derived cell mobilization and tumor homing: a process regulated by osteopontin. Int. J. Cancer,. 10.1002/ijc.28678.
    CrossRef  |  
  7. Daenen, L.G.M., J.M.L. Roodhart, Y. Shaked and E.E. Voest, 2013. A good host turned bad: Host-Mediated mechanisms of resistance to anti-tumor therapies. Oncogene. .
  8. Benayoun, L., M. Schaffer, R. Bril, S. Gingis-Velitski and E. Segal et al., 2013. Porfimer-sodium (Photofrin-II) in combination with ionizing radiation inhibits tumor-initiating cell proliferation and improves glioblastoma treatment efficacy. Cancer Biol. Ther., 14: 64-74.
    CrossRef  |  
  9. Benayoun, L. and Y. Shaked, 2013. In vitro enrichment of tumor-initiating cells from human established cell lines. Curr. Protoc. Stem Cell Biol.,. 10.1002/9780470151808.sc0307s24.
    CrossRef  |  
  10. Alishekevitz, D., R. Bril, D. Loven, V. Miller and T. Voloshin et al., 2013. Differential therapeutic effects of anti-VEGF-A antibody in different tumor models: implications for choosing appropriate tumor models for drug testing. Mol. Cancer Ther.,. 10.1158/1535-7163.MCT-13-0356.
    CrossRef  |  
  11. Izhak, L., G. Wildbaum, S. Jung, A. Stein, Y. Shaked and N. Karin, 2012. Dissecting the autocrine and paracrine roles of the CCR2-CCL2 axis in tumor survival and angiogenesis. PLoS One, Vol. 7. 10.1371/journal.pone.0028305.
    CrossRef  |  
  12. Francia, G., Y. Shaked, K. Hashimoto, J. Sun and M. Yin et al., 2012. Low-dose metronomic oral dosing of a prodrug of gemcitabine (LY2334737) causes antitumor effects in the absence of inhibition of systemic vasculogenesis. Mol. Cancer Ther., 11: 680-689.
    CrossRef  |  
  13. Bertolini, F., P. Mancuso, L. Benayoun, S. Gingis-Velitski and Y. Shaked, 2012. Chemotherapy-induced circulating bone marrow derived endothelial progenitor cell mobilization in cancer patients. Methods Mol. Biol., 904: 165-172.
  14. Benayoun, L., S. Gingis-Velitski, T. Voloshin, E. Segal and R. Segev et al., 2012. Tumor-initiating cells of various tumor types exhibit differential angiogenic properties and react differently to antiangiogenic drugs. Stem Cells, 30: 1831-1841.
    CrossRef  |  
  15. Voloshin, T., S. Gingis-Velitski, R. Bril, L. Benayoun and M. Munster et al., 2011. G-CSF supplementation with chemotherapy can promote revascularization and subsequent tumor regrowth: Prevention by a CXCR4 antagonist. Blood, 118: 3426-3435.
    CrossRef  |  
  16. Segal, E., H. Pan, L. Benayoun, P. Kopeckova, Y. Shaked, J. Kopecek and R. Satchi-Fainaro, 2011. Enhanced anti-tumor activity and safety profile of targeted nano-scaled HPMA copolymer-alendronate-TNP-470 conjugate in the treatment of bone malignances. Biomaterials, 32: 4450-4463.
    CrossRef  |  
  17. Schmid, M.C., D.J. Avraamides, P. Foubert, Y. Shaked and S.W. Kang et al., 2011. Combined blockade of integrin-α4β1 plus cytokines SDF-1α or IL-1β potently inhibits tumor inflammation and growth. Cancer Res., 71: 6965-6975.
    CrossRef  |  
  18. Pasquier, E., M.W. Kieran, J. Sterba, Y. Shaked and S. Baruchel et al., 2011. Moving forward with metronomic scheduling of anti-cancer treatment: Meeting report of the 2nd international workshop on metronomic and antiangiogenic chemotherapy in paediatric oncology. Trans. Oncol., 4: 203-211.
  19. Miller, K., A. Eldar-Boock, D. Polyak, E. Segal, L. Benayoun, Y. Shaked and R. Satchi-Fainaro, 2011. Antiangiogenic antitumor activity of HPMA copolymer-paclitaxel-alendronate conjugate on breast cancer bone metastasis mouse model. Mol. Pharmacol., 8: 1052-1062.
    CrossRef  |  
  20. Gingis-Velitski, S., D. Loven, L. Benayoun, M. Munster and R. Bril et al., 2011. Host response to short-term, single-agent chemotherapy induces matrix metalloproteinase-9 expression and accelerates metastasis in mice. Cancer Res., 71: 6986-6996.
    CrossRef  |  
  21. Emmenegger, U., G. Francia, A. Chow, Y. Shaked, A. Kouri, S. Man and R.S. Kerbel, 2011. Tumors that acquire resistance to low-dose metronomic cyclophosphamide retain sensitivity to maximum tolerated dose cyclophosphamide. Neoplasia, 13: 40-48.
    Direct Link  |  
  22. Bertolini, F., P. Marighetti, I. Martin-Padura, P. Mancuso, D. Hu-Lowe, Y. Shaked and A. D'Onofrio, 2011. Anti-VEGF and beyond: Shaping a new generation of anti-angiogenic therapies for cancer. Drug Discovery Today, 16: 1052-1060.
    CrossRef  |  
  23. Alishekevitz, D. and Y. Shaked, 2011. Therapy-Induced Tumor Angiogenesis and Vasculogenesis can be Blocked by Various Targeted Therapies. In: Klinische Onkologie 2011/2012: Gastroenterologische Und Chirurgische Onkologie, Roth, S.L. (Ed.). Dusseldorf University Press, Germany, pp: 104-110.
  24. Shaked, Y., P. Nathan, L.G. Daenen and R.S. Kerbel, 2010. Vascular Disrupting Agents: Rationale and Mechanisms of Action. In: Vascular Targeting Therapy for Cancer, Meyers, T. (Ed.). Springer, New York, pp: 117-134.
  25. Langenberg, M.H., M.W. Nijkamp, J.M. Roodhart, N. Snoeren and T. Tang et al., 2010. Liver surgery induces an immediate mobilization of progenitor cells in liver cancer patients: A potential role for G-CSF. Cancer Biol. Ther., 9: 743-748.
    Direct Link  |  
  26. Kerbel, R.S., F. Bertolini and Y. Shaked, 2010. Impact of Endothelial Progenitor Cells in Tumor Angiogenesis and Outcome of Antiangiogenic Therapy: New Perspectives on an Ongoing Controversy. In: The Tumor Microenviroment, Bagely, R.G. (Ed.). Chapter 12, Humana Press, New York.
  27. Izhak, L., G. Wildbaum, U. Weinberg, Y. Shaked and J. Alami et al., 2010. Predominant expression of CCL2 at the tumor site of prostate cancer patients directs a selective loss of immunological tolerance to CCL2 that could be amplified in a beneficial manner. J. Immunol., 184: 1092-1101.
    CrossRef  |  
  28. Emmenegger, U., G. Francia, Y. Shaked and R.S. Kerbel, 2010. Metronomic chemotherapy: Principles and lessons learned from applications in the treatment of metastatic prostate cancer. Recent Results Cancer Res., 180: 165-183.
    CrossRef  |  
  29. Daenen, L.G., J.M. Roodhart, Y. Shaked and E.E. Voest, 2010. Vascular Disrupting Agents (VDAs) in anticancer therapy. Curr. Clin. Pharmacol., 5: 178-185.
    Direct Link  |  
  30. Bertolini, F., P. Marighetti and Y. Shaked, 2010. Cellular and soluble markers of tumor angiogenesis: From patient selection to the identification of the most appropriate postresistance therapy. Biochim. Biophys. Acta Rev. Cancer, 1806: 131-137.
    CrossRef  |  
  31. Shaked, Y., T. Tang, J. Woloszynek, L.G. Daenen and S. Man et al., 2009. Contribution of granulocyte colony-stimulating factor to the acute mobilization of endothelial precursor cells by vascular disrupting agents. Cancer Res., 69: 7524-7528.
    CrossRef  |  
  32. Shaked, Y. and E.E. Voest, 2009. Bone marrow derived cells in tumor angiogenesis and growth: Are they the good, the bad or the evil? Biochim. Biophys. Acta, 1796: 1-4.
    CrossRef  |  
  33. Kerbel, R.S., Y. Shaked, S. Man, R. Munoz and W. Cruz-Munoz, 2009. Metronomic Chemotherapy: Basis and Rationale. In: Molecular Biology in Cancer: Toward New Therapies, Garcia-Foncillas, J. (Ed.). Prous Science, Barcelona, Spain, pp: 357-380.
  34. Folkins, C., Y. Shaked, S. Man, T. Tang and C.R. Lee et al., 2009. Glioma tumor stem-like cells promote tumor angiogenesis and vasculogenesis via vascular endothelial growth factor and stromal-derived factor 1. Cancer Res., 69: 7243-7251.
    CrossRef  |  
  35. Daenen, L.G., Y. Shaked, S. Man, P. Xu, E.E. Voest, R.M. Hoffman and R.S. Kerbel, 2009. Combining metronomic chemotherapy with Vascular Disrupting Agent (VDA) therapy: Impact on primary breast tumors versus advanced metastatic disease. Mol. Cancer Ther., 8: 2872-2881.
  36. Calleri, A., A. Bono, V. Bagnardi, J. Quarna and P. Mancuso et al., 2009. Predictive potential of angiogenic growth factors and circulating endothelial cells in breast cancer patients receiving metronomic chemotherapy plus bevacizumab. Clin. Cancer Res., 15: 7652-7657.
    CrossRef  |  PubMed  |  
  37. Bertolini, F., P. Mancuso, P. Braidotti, Y. Shaked and R.S. Kerbel, 2009. The multiple personality disorder phenotype(s) of circulating endothelial cells in cancer. Biochim. Biophys. Acta Rev. Cancer, 1796: 27-32.
    CrossRef  |  
  38. Bertolini, F., P. Mancuso, P. Braidotti, Y. Shaked and R.S. Kerbel, 2009. The Contribution of Circulating Endothelial Cells to Tumor Angiogenesis. In: Recent Advances in Angiogenesis and Antiangiogenesis, Ribatti, D. (Ed.). Chapter 7, Bentham eBooks, San Francisco.
  39. Voskas, D., Y. Babichev, L.S. Ling, J. Alami, Y. Shaked, R.S. Kerbel and D.J. Dumont, 2008. An eosinophil-specific cytokine and chemokine profile characterizes the inflammatory skin disease observed in Tie-2 transgenic mice. J. Leukocyte Biol., 84: 59-67.
  40. Shaked, Y., E. Henke, J. Roodhart, P Mancuso and M. Langenberg et al., 2008. Rapid chemotherapy-induced acute endothelial progenitor cell mobilization: implications for antiangiogenic drugs as chemosensitizing agents. Cancer Cell, 14: 263-273.
    PubMed  |  
  41. Kerbel, R.S., Y. Emmenegger, S. Man, R. Munoz, C. Folkin and Y. Shaked, 2008. Metronomic Antiangiogenic Chemotherapy in Mice and Man. In: Antiangiogenic Agents in Cancer Therapy, Teicher, B.A. and L.M. Ellis (Eds.). 2nd Edn., The Humana Press Inc., Totowa, USA, Pages: 577.
  42. Glade Bender, J.L., P.C. Adamson, J.M. Reid, L. Xu and S. Baruchel et al., 2008. Phase I trial and pharmacokinetic study of bevacizumab in pediatric patients with refractory solid tumors: A children's oncology group study. J. Clin. Oncol., 26: 399-405.
    Direct Link  |  
  43. Francia, G., U. Emmenegger, C.R. Lee, Y. Shaked and C. Folkins et al., 2008. Long term monitoring of metastasis models using a transfected marker detectable in the mouse urine. Mol. Cancer Ther., 7: 3452-3459.
  44. Donate, F., G.C. Parry, Y. Shaked, H. Hensley and X. Guan et al., 2008. Pharmacology of the novel antiangiogenic peptide ATN-161 (Ac-PHSCN-NH2): observation of a U-shaped dose-response curve in several preclinical models of angiogenesis and tumor growth. Clin. Can. Res., 14: 2137-2144.
    PubMed  |  
  45. Dellapasqua, S., F. Bertolini, V. Bagnardi, E. Campagnoli and E. Scarano et al., 2008. Metronomic cyclophosphamide and capecitabine combined with bevacizumab in advanced breast cancer. J. Clin. Oncol., 26: 4899-4905.
    Direct Link  |  
  46. Bosch-Marce, M., H. Okuyama, H. Kimura, J. Wesley and K. Sarkaret al., 2008. Effects of aging and HIF-1 activity on angiogenic cell mobilization and recovery of perfusion following critical limb ischemia. Circ. Res., 101: 1310-1318.
  47. Shaked, Y. and R.S. Kerbel, 2007. Antiangiogenic strategies on defense: On the possibility of blocking rebounds by the tumor vasculature after chemotherapy. Cancer Res., 67: 7055-7058.
    Direct Link  |  
  48. Loven, D., E. Be'ery, R. Yeryshaimi, C. Koren and A. Sulkes et al., 2007. Daily low-dose/continuous capecitabine reduces VEGF and PDGF-BB serum levels in rectal carcinoma patients receiving neoadjuvant irradiation. Acta Oncol., 2007: 1-6.
  49. Kerbel, R.S., U. Emmenegger, S. Man, R. Munoz, F. Bertolini and Y. Shaked, 2007. Metronomic Antiangiogenic Chemotherapy: Questions and Answers. In: Tumor Angiogenesis-Basic Mechanisms and Cancer Therapy, Marme, D. and N. Fusenig (Eds.). Springer-Verlag, Heidelberg, Germany, pp: 593-607.
  50. Folkins, C., S. Man, P. Xu, Y. Shaked, D.J. Hicklin and R.S. Kerbel, 2007. Anticancer therapies combining antiangiogenic and tumor cell cytotoxic effects reduce the tumor stem-like cell fraction in glioma xenograft tumors. Cancer Res., 67: 3560-3564.
    PubMed  |  
  51. Emmenegger, U., Y. Shaked, G. Bocci, I. Spasojevic and S. Ludeman, S. Man and R.S. Kerbel, 2007. Altered metabolism of cyclophosphamide given in a low-dose metronomic manner does not account for eventual resistance. Mol. Cancer Ther., 6: 2280-2289.
  52. Ciarrocchi, A., V. Jankovic, Y. Shaked, D.J. Nolan and V. Mittal et al., 2007. Id1 controls an angiogenic switch in the bone marrow by inhibiting the expression of p21. PLoS One, Vol. 2. .
  53. Cervi, D., Y. Shaked, M. Haeri, T. Usenko and C.R. Lee et al., 2007. Enhanced natural killing and erythropoietic activity in vegf overexpressing mice delays f-mulv induced leukemogenesis. Blood, 109: 2139-2146.
  54. Bertolini, F., P. Mancuso, Y. Shaked and R.S. Kerbel, 2007. Molecular and cellular biomarkers for angiogenesis in clinical oncology. Drug Discovery Today, 12: 806-8012.
    CrossRef  |  PubMed  |  
  55. Shaked, Y., A. Ciarrocchi, M. Franco, C.R. Lee and S. Man et al., 2006. Therapy-induced acute recruitment of circulating endothelial progenitor cells to tumors. Science, 313: 1785-1787.
    CrossRef  |  Direct Link  |  
  56. Ng, S., A. Sparreboom, Y. Shaked, R.C. Lee and S. Man et al., 2006. Metronomic abi-007 therapy: Antiangiogenic and antitumor activity of a nanoparticle albumin-bound paclitaxel. Clin. Cancer Res., 12: 4331-4338.
  57. Munoz, R., S. Man, Y. Shaked, C.R. Lee, J. Wong, G. Francia and R.S Kerbel, 2006. Highly efficacious non-toxic preclinical treatment for advanced metastatic breast cancer using oral combination UFT-Cyclophosphamide metronomic chemotherapy. Cancer Res., 66: 3386-3391.
    PubMed  |  
  58. Mancuso, P., M. Colleoni, A. Calleri, L. Orlando and P. Maisonneuve et al., 2006. Circulating endothelial-cell kinetics and viability predict survival in breast cancer patients receiving metronomic chemotherapy. Blood, 108: 452-459.
    Direct Link  |  
  59. Kerbel, R.S., F. Bertolini, S. Man, D.J. Hicklin, U. Emmenegger and Y. Shaked, 2006. Antiangiogenic Drugs as Broadly Effective Chemosensitizing Agents. In: Angiogenesis: From Basic Science to Clinical Applications, Ferrara, N. (Ed.). CRC Press, Boca Raton, FL., USA, pp: 181-198.
  60. Franco, M., S. Man, L. Chen, U. Emmenegger and Y. Shaked et al., 2006. Targeted Antiangiogenic Therapy Leads to Short and Long Term Impairment of Vascular Function and Increases in Tumor Hypoxia. Cancer Res., 66: 3639-3648.
    PubMed  |  
  61. Emmenegger, U., G.C. Morton, G. Francia, Y. Shaked and M. Franco, S. Man and R.S. Kerbel, 2006. Low-dose metronomic cyclophosphamide induces sustained hypoxia in human tumor xenografts, which can be exploited therapeutically by the combination with the hypoxic cell cytotoxin tirapazamine. Can. Res., 66: 1664-1674.
    CrossRef  |  
  62. Buckstein, R., R.S. Kerbel, Y. Shaked, R. Nayar and C. Foden et al., 2006. High dose celecoxib and metronomic low-dose cyclophosphamide is effective and safe therapy in patients with relapsed and refractory aggressive histology NHL. Clin. Cancer Res., 12: 5190-5198.
  63. Bertolini, F., Y. Shaked, P. Mancuso and R.S Kerbel, 2006. The multifaceted circulating endothelial cell in cancer: From promiscuity to surrogate marker and target identification. Nat. Rev. Cancer, 6: 835-845.
    Direct Link  |  
  64. Shaked, Y., U. Emmenegger, G. Francia, L. Chen and C. Lee et al., 2005. Intermittent bolus dose combined with low-dose metronomic cyclophosphamide as an effective regimen for delaying relapse in both solid and hematologic malignancies. Can. Res., 65: 7045-7051.
  65. Shaked, Y., U. Emmenegger, S. Man, D. Cervi, F. Bertolini, Y. Ben-David and R.S. Kerbel, 2005. Optimal biological dose of metronomic chemotherapy regimen is associated with maximum antiangiogenic activity. Blood, 105: 4500-4507.
    PubMed  |  
  66. Shaked, Y., G. Bocci, R. Munoz, S. Man and J.M.L. Ebos et al., 2005. Cellular and molecular surrogate markers to monitor targeted and non-targeted antiangiogenic drug activity and determine optimal biologic dose. Curr. Cancer Drug Target, 5: 551-559.
    Direct Link  |  
  67. Shaked, Y., F. Bertolini, S. Man, M.S. Rogers and D. Cervi et al., 2005. Genetic heterogeneity of the vasculogenic phenotype parallels angiogenesis: Implications for cellular surrogate marker analysis of antiangiogenesis. Cancer Cell, 7: 101-111.
    CrossRef  |  PubMed  |  
  68. Shaked, Y., D. Cervi, M. Neuman, L. Chen and G. Klement et al., 2005. The splenic microenvironment is a source of pro-angiogenesis / inflammatory mediators accelerating the expansion of murine erythroleukemic cells. Blood, 105: 4500-4507.
    PubMed  |  Direct Link  |  
  69. Munoz, R., Y. Shaked, F. Bertolini, U. Emmenegger, S. Man and RS. Kerbel, 2005. Anti-angiogenic treatment of breast cancer using metronomic low-dose chemotherapy. Breast, 14: 466-479.
    CrossRef  |  
  70. Francia, G., S.K. Green, G. Bocci, S. Man and U. Emmenegger et al., 2005. Down-Regulation of DNA mismatch repair proteins in human and murine tumor spheroids: Implications for multicellular resistance to alkylating agents. Mol. Cancer Ther., 4: 1484-1494.
    PubMed  |  
  71. Pak, B.J., J. Lee, B.L. Thai, S.Y. Fuchs and Y. Shaked et al., 2004. Radiation resistance of human melanoma analyzed by retroviral insertional mutagenesis reveals a possible role for dopachrome tautomerase. Oncogene, 23: 30-38.
    PubMed  |  Direct Link  |  
  72. Emmenegger, U., S. Man, Y. Shaked, G. Francia, J.W. Wong, D.J. Hicklin and R.S. Kerbel, 2004. A comparative analysis of low-dose metronomic cyclophosphamide reveals absent or low-grade toxicity on tissues highly sensitive to the toxic effects of maximum tolerated dose regimens. Can. Res., 64: 3994-4000.
    Direct Link  |  
  73. Hijazi, N., Y. Shaked, H. Rosenmann, T. Ben-Hur and R. Gabizon, 2003. Copper binding to PrPC may inhibit prion disease propagation. Brain Res., 993: 192-200.
    CrossRef  |  PubMed  |  
  74. Bertolini, F., S. Paul, P. Mancuso, S. Monestiroli, A. Gobbi, Y. Shaked and R.S. Kerbel, 2003. Maximum tolerable dose and low-dose metronomic chemotherapy have opposite effects on the mobilization and viability of circulating endothelial progenitor cells. Cancer Res., 63: 4342-4346.
    PubMed  |  Direct Link  |  
  75. Shaked, Y., R. Engelstein and R. Gabizon, 2002. The binding of prion proteins to serum components is affected by detergent extraction conditions. J. Neurochem., 82: 1-5.
    CrossRef  |  PubMed  |  
  76. Shaked, Y., N. Hijazi and R. Gabizon, 2002. Doppel and PrPC do not share the same membrane microenvironment. FEBS let., 530: 85-88.
    CrossRef  |  
  77. Shaked, Y., H. Rosenmann, N. Hijazi, M. Halimi and R. Gabizon, 2001. Copper binding to PrP Isoforms: A putative marker of their conformation and function. J. Virol., 75: 7872-7874.
    CrossRef  |  
  78. Shaked, G.M., Y. Shaked, Z.K. Inbal, M. Halimi, I. Avraham and R. Gabizon, 2001. A protease-resistant prion protein isoform is present in urine of animals and humans affected with prion diseases. J. Biol. Chem., 276: 31479-31482.
    CrossRef  |  
  79. Shaked, Y., H. Rosenmann, G. Talmor and R. Gabizon, 1999. A C-terminal truncated PrP isoform is present in mature sperm. J. Biol. Chem., 274: 32153-32158.
    CrossRef  |  PubMed  |