Dr. Feng-Ru Tang
My Social Links

Dr. Feng-Ru Tang

Senior Scientist
National University of Singapore, Singapore


Highest Degree
Ph.D. in Anatomy from University of Singapore, Singapore

Share this Profile

Area of Interest:

Biomedical Sciences
100%
Brain Research
62%
Neuroscience
90%
Neurocytology
75%
Epilepsy
55%

Research Publications in Numbers

Books
1
Chapters
5
Articles
89
Abstracts
0

Selected Publications

  1. Yang, T.T., F. Qian, L. Liu, X.C. Peng, J.R. Huang, B.X. Ren and F.R. Tang, 2021. Astroglial connexins in epileptogenesis. Seizure, 84: 122-128.
    CrossRef  |  Direct Link  |  
  2. Yang, B., Y. Ao, Y. Liu, X. Zhang, Y. Li, F. Tang and H. Xu, 2021. Activation of dopamine signals in the olfactory tubercle facilitates emergence from isoflurane anesthesia in mice. Neurochem. Res., 10.1007/s11064-021-03291-4.
    CrossRef  |  Direct Link  |  
  3. Wang, H., Z. Ma, H. Shen, Z. Wu and L. Liu et al., 2021. Early life irradiation-induced hypoplAsia and impairment of neurogenesis in the dentate gyrus and adult depression are mediated by microRNA- 34a-5p/T-cell intracytoplasmic antigen-1 pathway. Cells, Vol. 10. 10.3390/cells10092476.
    CrossRef  |  Direct Link  |  
  4. Tang, F.R., L. Liu, H. Wang, K.J.N. Ho and G. Sethi, 2021. Spatiotemporal dynamics of γH2AX in the mouse brain after acute irradiation at different postnatal days with special reference to the dentate gyrus of the hippocampus. Aging, 13: 15815-15832.
    CrossRef  |  Direct Link  |  
  5. Ren, B.X., I. Huen, Z.J. Wu, H. Wang and M.Y. Duan et al., 2021. Early postnatal irradiation?induced age?dependent changes in adult mouse brain: MRI based characterization. BMC Neurosci., Vol. 22. 10.1186/s12868-021-00635-2.
    CrossRef  |  Direct Link  |  
  6. Wang, Q., C. Xie, S. Xi, F. Qian, X. Peng, J. Huang and F. Tang, 2020. Radioprotective effect of flavonoids on ionizing radiation-induced brain damage. Molecules, Vol. 25. 10.3390/molecules25235719.
    CrossRef  |  Direct Link  |  
  7. Wang, H., K.S. Ahn, S.A. Alharbi, O.H.M. Shair and F. Arfuso et al., 2020. Celastrol alleviates gamma irradiation-induced damage by modulating diverse inflammatory mediators. Int. J. Mol. Sci., 10.3390/ijms21031084.
    CrossRef  |  Direct Link  |  
  8. Segaran, R.C., L.Y. Chan, H. Wang, G. Sethi and F.R. Tang, 2020. Neuronal development-related miRNAs as biomarkers for alzheimer`s disease, depression, schizophrenia and ionizing radiation exposure. Curr. Medic. Chem., 28: 19-52.
    CrossRef  |  Direct Link  |  
  9. Saw, G. and F.R. Tang, 2020. Epigenetic regulation of the hippocampus, with special reference to radiation exposure. Int. J. Mol. Sci., 10.3390/ijms21249514.
    CrossRef  |  Direct Link  |  
  10. Liu, Y.D., G. Tang, F. Qian, L. Liu, J.R. Huang and F.R. Tang, 2020. Astroglial connexins in neurological, neuropsychological disorders and radiation exposure. Curr. Medic. Chem., 10.2174/0929867327666200610175037.
    CrossRef  |  Direct Link  |  
  11. Wu, X.L., J.S. Zhou, L.H. Wang, J.X. Liu and H.B. Hu et al., 2019. Proliferation of NG2 cells in the epileptic hippocampus. Epilepsy Res., 152: 67-72.
    CrossRef  |  Direct Link  |  
  12. Wang, S.W., B.X. Ren, F. Qian, X.Z. Luo and X. Tang et al., 2019. Radioprotective effect of epimedium on neurogenesis and cognition after acute radiation exposure. Neurosci. Res., 145: 46-53.
    CrossRef  |  Direct Link  |  
  13. Wang, H., R.C. Segaran, L.Y. Chan, A.A.M. Aladresi and A. Chinnathambi et al., 2019. Gamma radiation-induced disruption of cellular junctions in HUVECs is mediated through affecting MAPK/NF-u03baB inflammatory pathways. Oxidative Med. Cell. Longevity, 10.1155/2019/1486232.
    CrossRef  |  Direct Link  |  
  14. Peng, S., B. Yang, M.Y. Duan, Z.W. Liu and W.F. Wang et al., 2019. The disparity of impairment of neurogenesis and cognition after acute or fractionated radiation exposure in adolescent BALB/c mice. Dose-Response, 10.1177/1559325818822574.
    CrossRef  |  Direct Link  |  
  15. Ma, Z., Y.Y. Wang, H.W. Xin, L. Wang and F. Arfuso et al., 2019. The expanding roles of long non-coding RNAs in the regulation of cancer stem cells. Int. J. Biochem. Cell Biol., 108: 17-20.
    CrossRef  |  Direct Link  |  
  16. Guo, Y.R., Z.W. Liu, S. Peng, M.Y. Duan and J.W. Feng et al., 2019. The neuroprotective effect of amitriptyline on radiation-induced impairment of hippocampal neurogenesis. Dose-Response, 10.1177/1559325819895912.
    CrossRef  |  Direct Link  |  
  17. Cheng, J.T., L. Wang, H. Wang, F.R. Tang and W.Q. Cai et al., 2019. Insights into biological role of lncrnas in epithelial-mesenchymal transition. Cells, 10.3390/cells8101178.
    CrossRef  |  Direct Link  |  
  18. Chen, X., F.R. Tang, F. Arfuso, W.Q. Cai, Z. Ma, J. Yang and G. Sethi, 2019. The emerging role of long non-coding rnas in the metastasis of hepatocellular carcinoma. Biomolecules, 10: 1-17.
    CrossRef  |  Direct Link  |  
  19. hua Xu, J., H. Wang, W. Zhang and F. ru Tang, 2018. Alterations of l-type voltage dependent calcium channel alpha 1 subunit in the hippocampal CA3 region during and after pilocarpine-induced epilepsy. Neurochem. Int., 114: 108-119.
    CrossRef  |  Direct Link  |  
  20. Xu, J.H. and F.R. Tang, 2018. Voltage-dependent calcium channels, calcium binding proteins, and their interaction in the pathological process of epilepsy. Int. J. Mol. Sci., 10.3390/ijms19092735.
    CrossRef  |  Direct Link  |  
  21. Wu, Z.J., F.R. Tang, Z.W. Ma, X.C. Peng and Y. Xiang et al., 2018. Oncolytic viruses for tumor precision imaging and radiotherapy. Hum. Gene Ther., 29: 204-222.
    CrossRef  |  Direct Link  |  
  22. Wu, X.L., D.M. Ma, W. Zhang, J.S. zhou, Y.W. Huo, M. Lu and F.R. Tang, 2018. Cx36 in the mouse hippocampus during and after pilocarpine-induced status epilepticus. Epilepsy Res., 141: 64-72.
    CrossRef  |  Direct Link  |  
  23. Tang, F.R. and K. Loganovsky, 2018. Low dose or low dose rate ionizing radiation-induced health effect in the human. J. Environ. Radioact., 192: 32-47.
    CrossRef  |  Direct Link  |  
  24. Shanmugam, M.K., H. Shen, F.R. Tang, F. Arfuso and M. Rajesh et al., 2018. Potential role of genipin in cancer therapy. Pharmacol. Res., 133: 195-200.
    CrossRef  |  Direct Link  |  
  25. Peng, X.C., J.R. Huang, S.W. Wang, L. Liu and Z.Z. Liu et al., 2018. Traditional Chinese medicine in neuroprotection after brain insults with special reference to radioprotection. Evidence-Based Compl. Alt. Med., 10.1155/2018/2767208.
    CrossRef  |  Direct Link  |  
  26. Liu, L., K.S. Ahn, M.K. Shanmugam, H. Wang and H. Shen et al., 2018. Oleuropein induces apoptosis via abrogating NFu2010u03baB activation cascade in estrogen receptoru2013negative breast cancer cells. J. Cell. Biochem., 120: 4504-4513.
    CrossRef  |  Direct Link  |  
  27. Yang, B., B.X. Ren and F.R. Tang, 2017. Prenatal irradiation-induced brain neuropathology and cognitive impairment. Brain Dev., 39: 10-22.
    CrossRef  |  Direct Link  |  
  28. Wang, H., M.K. Sim, W.K. Loke, A. Chinnathambi, S.A. Alharbi, F.R. Tang and G. Sethi, 2017. Potential protective effects of ursolic acid against gamma irradiation-induced damage are mediated through the modulation of diverse inflammatory mediators. Front. Pharmacol., 10.3389/fphar.2017.00352.
    CrossRef  |  Direct Link  |  
  29. Tang, F.R., W.K. Loke, P. Wong and B.C. Khoo, 2017. Radioprotective effect of ursolic acid in radiation-induced impairment of neurogenesis, learning and memory in adolescent BALB/c mouse. Physiol. Behav., 175: 37-46.
    CrossRef  |  Direct Link  |  
  30. Tang, F.R., W.K. Loke and B.C. Khoo, 2017. Postnatal irradiation-induced hippocampal neuropathology, cognitive impairment and aging. Brain Dev., 39: 277-293.
    CrossRef  |  Direct Link  |  
  31. Zhong, Q., B.X. Ren and F.R. Tang, 2016. Neurogenesis in the hippocampus of patients with temporal lobe epilepsy. Curr. Neurol. Neurosci. Rep., 10.1007/s11910-015-0616-3.
    CrossRef  |  Direct Link  |  
  32. Tang, F.R., W.K. Loke and B.C. Khoo, 2016. Low-dose or low-dose-rate ionizing radiation-induced bioeffects in animal models. J. Radiat. Res., 58: 165-182.
    CrossRef  |  Direct Link  |  
  33. Qian, F. and F.R. Tang, 2016. Metabotropic glutamate receptors and interacting proteins in epileptogenesis. Curr. Neuropharmacol., 14: 551-562.
    CrossRef  |  Direct Link  |  
  34. Ma, D.L., J.Q. Qu, E.L.K. Goh and F.R. Tang, 2016. Reorganization of basolateral amygdala-subiculum circuitry in mouse epilepsy model. Front. Neuroanatomy, 10.3389/fnana.2015.00167.
    CrossRef  |  Direct Link  |  
  35. Liu, J.X., X. Cao, Y. Liu and F.R. Tang, 2016. Altered expression of neuronal ccr6 during pilocarpine induced status epilepticus in mice. Epilepsy Res., 126: 45-52.
    CrossRef  |  Direct Link  |  
  36. Wu, X.L., Y.C. Tang, Q.Y. Lu, X.L. Xiao, T.B. Song and F.R. Tang, 2015. Astrocytic Cx 43 and Cx 40 in the mouse hippocampus during and after pilocarpine-induced status epilepticus. Exp. Brain Res., 233: 1529-1539.
    CrossRef  |  Direct Link  |  
  37. Xu, J.H., Z.B. Yang, H. Wang and F.R. Tang, 2014. Co-localization of l-type voltage dependent calcium channel alpha 1d subunit (Cav1.3) and calbindin (CB) in the mouse central nervous system. Neurosci. Lett., 561: 80-85.
    CrossRef  |  Direct Link  |  
  38. Xiao, X.L., D.L. Ma, J. Wu and F.R. Tang, 2013. Metabotropic glutamate receptor 5 (mGluR5) regulates proliferation and differentiation of neuronal progenitors in the developmental hippocampus. Brain Res., 1493: 1-12.
    CrossRef  |  PubMed  |  Direct Link  |  
  39. Tang, F.R. and W.K. Loke, 2013. Sulfur mustard and respiratory diseases: revisit with special reference to the u201ccomments on u2018sulfur mustard and respiratory diseasesu2019, tang and loke () and a prepared integrated mechanism for chronic pulmonary disease from exposure to sulfur mustardu201d by saburi and ghanei (). Crit. Rev. Toxicol., 43: 277-281.
    CrossRef  |  Direct Link  |  
  40. Tang, F.R. and W.K. Loke, 2013. Molecular mechanisms of low dose ionizing radiation induced hormesis, adaptive responses, radioresistance, bystander effects and genomic instability. Int. J. Radiat. Biol. .
  41. Liu, J., Y. Liu and F.R. Tang, 2013. Survival of Calbindin, Calretinin and Parvalbumin positive neurons in mouse hippocampal CA area at chronic stage of Pilocarpine-induced epilepsy. J. Central South Univ. Med. Sci., 38: 437-442.
    CrossRef  |  PubMed  |  Direct Link  |  
  42. Wu, J., D.L. Ma, E.A. Ling and F.R. Tang, 2012. Corticotropin releasing factor (CRF) in the hippocampus of the mouse pilocarpine model of status epilepticus. Neurosci. Lett., 512: 83-88.
    CrossRef  |  PubMed  |  Direct Link  |  
  43. Tang, F.R. and W.K. Loke, 2012. Sulfur mustard and respiratory diseases. Crit. Rev. Toxicol., 42: 688-702.
    CrossRef  |  PubMed  |  Direct Link  |  
  44. Liu, J.X., C. Xia, Y. Liu and F.R. Tang, 2012. CCL28 in the mouse hippocampal CA1 area and the dentate gyrus during and after pilocarpine-induced status epilepticus. Neurochem. Int., 61: 1094-1101.
    CrossRef  |  PubMed  |  Direct Link  |  
  45. Tang, F.R., W.K. Loke and E.A. Ling, 2011. Comparison of status epilepticus models induced by pilocarpine and nerve agents - a systematic review of the underlying aetiology and adopted therapeutic approaches. Curr. Med. Chem., 18: 886-899.
    CrossRef  |  PubMed  |  Direct Link  |  
  46. Tang, F.R., K. Kato and W.K Loke, 2011. Kainic acid induced seizures and brain damage: Mechanism and relevant therapeutic approaches. In: Chemical-Induced Seizures: Mechanisms, Consequences and Treatment, Tang, F.R. and L.W. Keong (Eds.)., Chapter 7, Bentham Science Publishers Ltd., USA., pp: 89-106.
  47. Tang, F.R. and W.K. Loke, 2011. Pilocarpine and warfare nerve agent induced seizures: Similarities and differences. In: Chemical-Induced Seizures: Mechanisms, Consequences and Treatment, Tang, F.R. and L.W. Keong (Eds.)., Chapter 8, Bentham Science Publishers Ltd., USA., pp: 80-88.
  48. Liu, J.X., Y. Liu and F.R. Tang, 2011. Pilocarpine induced Status epilepticus alters hippocampal PKC expression in mice. Acta Neurobiol. Exp., 71: 220-232.
    PubMed  |  Direct Link  |  
  49. Liu, J., F. Tang and Y. Liu, 2011. Neuron activation, degeneration and death in the hippocampus of mice after pilocarpine induced status epilepticus. J. Central South Univ. Med. Sci., 36: 1071-1078.
    CrossRef  |  PubMed  |  Direct Link  |  
  50. Zhang, S., Y.Y. Xia, H.C. Lim, F.R. Tang and Z.W. Feng, 2010. NCAM-mediated locomotor recovery from spinal cord contusion injury involves neuroprotection, axon regeneration and synaptogenesis. Neurochem Int., 56: 919-929.
    CrossRef  |  PubMed  |  Direct Link  |  
  51. Xu, J.H., L. Long, J. Wang, Y.C. Tang, H.T. Hu, T.W. Soong and F.R. Tang, 2010. Nuclear localization of Cav2.2 and its distribution in the mouse central nervous system, and changes in the hippocampus during and after pilocarpine-induced status epilepticus. Neuropathol. Applied Neurobiol., 36: 71-85.
    CrossRef  |  PubMed  |  Direct Link  |  
  52. Tang, F.R. and W.K. Loke, 2010. Neurogenesis in the dentate gyrus of patients and animal models of temporal lobe epilepsy. In: Neurogenesis, Neurodegeneration and Neuroregeneration, Tang, B.L.( Ed.)., Research Signpost, Kerala, India, pp: 43-58.
  53. Tang, F.R. and W.K. Loke, 2010. Cyto-, axo- and dendro-architectonic changes of neurons in the limbic system in the mouse pilocarpine model of temporal lobe epilepsy. Epilepsy Res., 89: 43-51.
    CrossRef  |  
  54. Liu, J.X., Y.C. Tang, Y. Liu and F.R. Tang, 2010. Status epilepticus alters hippocampal PKAβ and PKAγ expression in mice. Seizure, 19: 414-420.
    CrossRef  |  PubMed  |  Direct Link  |  
  55. He, D.F., D.L. Ma, Y.C. Tang, W.L. Lee, J. Engel Jr., A. Bragin and F.R. Tang, 2010. Morpho-physiological characteristics of dorsal subicular network in mice after pilocarpine induced status epilepticus. Brain Pathol., 20: 80-95.
  56. Zhang, S., S. Khanna and F.R. Tang, 2009. Patterns of hippocampal neuronal loss and axon reorganization of the dentate gyrus in the mouse pilocarpine model of temporal lobe epilepsy. J. Neurosci. Res., 87: 1135-1149.
    CrossRef  |  PubMed  |  Direct Link  |  
  57. Xu, J.H., L. Long, Y.C. Tang, J.T. Zhang, H.T. Hu and F.R. Tang, 2009. CCR3, CCR2A and MIP-1α, MCP1 in the mouse hippocampus during and after pilocarpine induced status epilepticus. Neuropathol. Applied Neurobiol., 35: 496-514.
  58. Tang, F.R., H.F. Bradford and E.A. Ling, 2009. Metabotropic glutamate receptors in the control of neuronal activity and as targets for development of anti-epileptogenic drugs. Curr. Med. Chem., 16: 2189-2204.
    CrossRef  |  PubMed  |  
  59. Tang, F.R., D.L. Ma and W.L. Lee, 2009. Entorhinal cortex in temporal lobe epilepsy. In: Pan Brain Abnormal Neural Network in Epilepsy, Tang, F.R. (Edt.). Chapter 8, Research Signpost, Kerala, India, pp: 121-133.
  60. Tang, F.R. and W.L. Lee, 2009. Hippocampal mossy fiber reorganization in temporal lobe epilepsy (TLE). In: Pan Brain Abnormal Neural Network in Epilepsy, Tang, F.R. (Edt.). Chapter 3, Research Signpost, Kerala, India, pp:23-40.
  61. Ma, D.L. and Y.C. Tang and F.R. Tang, 2008. Cytoarchitectonics and afferent/efferent reorganization of neurons in layers II and III of the lateral entorhinal cortex in the mouse pilocarpine model of temporal lobe epilepsy. J. Neurosci. Res., 86: 1324-1342.
  62. Liu, J.X., Y.C. Tang, Y. Liu and F.R. Tang, 2008. MGluR5-PLCβ4-PKCβ2/PKCγ pathways in hippocampal CA1 pyramidal neurons in pilocarpine model of status epilepticus in mGluR5+/+ mice. Epilepsy Res., 82: 111-123.
    CrossRef  |  Direct Link  |  
  63. Kaur, C., V. Sivakumar, J. Lu, F.R. Tang and E.A. Ling, 2008. Melatonin attenuates hypoxia-induced ultrastructural changes and increased vascular permeability in the developing hippocampus. Brain Pathol., 18: 533-547.
    CrossRef  |  PubMed  |  Direct Link  |  
  64. Xu, J.H., L. Long, Y.C. Tang, H.T. Hu and F.R. Tang, 2007. Cav1.2, Cav1.3 and Cav2.1 in the mouse hippocampus during and after pilocarpine-induced status epilepticus. Hippocampus, 17: 235-251.
    CrossRef  |  Direct Link  |  
  65. Tang, F.R., P.M. Chen, Y.C. Tang, M.C. Tsai and W.L. Lee, 2007. Two-methyl-6-phenylethynyl-pyridine (MPEP), a metabotropic glutamate receptor 5 antagonist, with low doses of MK801 and diazepam: A novel approach for controlling status epilepticus. Neuropharmacology, 53: 821-831.
    CrossRef  |  PubMed  |  Direct Link  |  
  66. Liu, J.X., X. Cao, Y.C. Tang, Y. Liu and F.R. Tang, 2007. CCR7, CCR8, CCR9 and CCR10 in the mouse hippocampal CA1 area and the dentate gyrus during and after pilocarpine-induced status epilepticus. J. Neurochem., 100: 1072-1088.
    CrossRef  |  PubMed  |  Direct Link  |  
  67. Jiang, F.L., Y.C. Tang, S.C. Chia, T.M. Jay and F.R. Tang, 2007. Anticonvulsive effect of a selective mGluR8 agonist (S)-3,4-dicarboxyphenylglycine (S-3,4-DCPG) in the mouse pilocarpine model of status epilepticus. Epilepsia, 48: 783-792.
    CrossRef  |  PubMed  |  Direct Link  |  
  68. Tang, F.R., S.C. Chia, F.L. Jiang, D.L. Ma, P.M. Chen and Y.C. Tang, 2006. Calcium binding protein containing neurons in the gliotic mouse hippocampus with special reference to their afferents from the medial septum and the entorhinal cortex. Neuroscience, 140: 1467-1479.
    CrossRef  |  PubMed  |  Direct Link  |  
  69. Ma, D.L., Y.C. Tang, P.M. Chen, S.C. Chia and F.L. Jiang et al 2006. Reorganization of CA3 area of the mouse hippocampus after pilocarpine induced temporal lobe epilepsy with special reference to the CA3-septum pathway. J. Neurosci. Res., 83: 318-331.
    CrossRef  |  
  70. Ma, D.L., S.C. Chia, Y.C. Tang, M.L.J. Chang, A. Probst, J.M. Burgunder and F.R. Tang, 2006. Spastin in the human and mouse central nervous system with special reference to its expression in the hippocampus of mouse pilocarpine model of status epilepticus and temporal lobe epilepsy. Neurochem. Int., 49: 651-664.
    CrossRef  |  PubMed  |  Direct Link  |  
  71. Tang, F.R., S.C. Chia, S. Zhang, P.M. Chen and H. Gao et al ., 2005. Glutamate receptor 1-immunopositive neurons in the gliotic CA1 area of the mouse hippocampus after pilocarpine-induced status epilepticus. Eur. J. Neurosci., 21: 2361-2374.
    CrossRef  |  PubMed  |  
  72. Tang, F.R., 2005. Agonists and antagonists of metabotropic glutamate receptors: anticonvulsants and antiepileptogenic agents? Curr. Neuropharmacol., 3: 299-307.
    Direct Link  |  
  73. Wen, Q., M.K. Sim and F.R. Tang, 2004. Reduction of infarct size by orally administered des-aspartate-angiotensin I in the ischemic reperfused rat heart. Regul Pept., 120: 149-153.
    CrossRef  |  PubMed  |  
  74. Tang, F.R., W.L. Lee, H. Gao, Y. Chen, Y.T. Loh and S.C. Chia, 2004. Expression of different isoforms of protein kinase C in the rat hippocampus after pilocarpine-induced status epilepticus with special reference to CA1 area and the dentate gyrus. Hippocampus, 14: 87-98.
    CrossRef  |  PubMed  |  
  75. Tang, F.R., S.C. Chia, P.M. Chen, H. Gao and W.L. Lee et al., 2004. Metabotropic glutamate receptor 2/3 in the hippocampus of patients with mesial temporal lobe epilepsy, and of rats and mice after pilocarpine-induced status epilepticus. Epilpesy Res., 59: 167-180.
    CrossRef  |  PubMed  |  
  76. Sim, M.K., F.R. Tang and X.G. Xu, 2004. Effects of des-aspartate-angiotensin I on neointima growth, cardiac hypertrophy and arteriosclerosis. Regul. Pept., 117: 213-217.
  77. Tham, M., M.K. Sim and F.R. Tang, 2001. Location of renin-angiotensin system components in the hypoglossal nucleus of the rat. Regul. Pept., 101: 51-57.
    CrossRef  |  PubMed  |  
  78. Tang, F.R., W.L. Lee, J. Yang, M.K. Sim and E.A. Ling, 2001. Metabotropic glutamate receptor 8 in the rat hippocampus after pilocarpine induced status epilepticus. Neurosci. Lett., 300: 137-140.
    CrossRef  |  PubMed  |  
  79. Tang, F.R., W.L. Lee, J. Yang, M.K. Sim and E.A. Ling, 2001. Expression of metabotropic glutamate receptor 1alpha in the hippocampus of rat pilocarpine model of status epilepticus. Epilepsy Res., 46: 179-189.
    PubMed  |  Direct Link  |  
  80. Tang, F.R., T.T. Yeo and W.L. Lee, 2001. Expression of the group I metabotropic glutamate receptor in the hippocampus of patients with mesial temporal lobe epilepsy. J. Neurocytol., 30: 403-411.
    PubMed  |  Direct Link  |  
  81. Tang, F.R., J.F. Yeo and S.K. Leong, 2001. Qualitative light and electron microscope study of glutamate receptors in the caudal spinal trigeminal nucleus of the rat. J. Dent. Res., 80: 1736-17341.
    CrossRef  |  
  82. Tang, F.R. and W.L. Lee, 2001. Expression of the group II and III metabotropic glutamate receptors in the hippocampus of patients with mesial temporal lobe epilepsy. J. Neurocytol., 30: 135-141.
    CrossRef  |  
  83. Tang, F.R. and M.K. Sim, 1999. Pre- and/or post-synaptic localisation of metabotropic glutamate receptor 1alpha (mGluR1alpha) and 2/3 (mGluR2/3) in the rat spinal cord. Neurosci. Res., 34: 73-78.
    CrossRef  |  PubMed  |  
  84. Yeo, J.F., F.R. Tang and S.K. Leong, 1997. Ultrastructural study of the distribution of NADPH-d in the rat caudal spinal trigeminal nucleus. Int. J. Neurosci., 91: 429-443.
  85. Yeo, J.F., F.R. Tang and S.K. Leong, 1997. Expression of glutamate receptor subunit 1 and nitric oxide synthase in the hypoglossal nucleus and dorsal vagal nucleus in the rat after neurectomy. Int. J. Neurosci., 90: 9-20.
    PubMed  |  
  86. Tang, F.R. and M.K. Sim, 1997. Metabotropic glutamate receptor subtype-1 alpha (mGluR1 alpha) immunoreactivity in ependymal cells of the rat caudal medulla oblongata and spinal cord. Neurosci. Lett., 225: 177-180.
    CrossRef  |  PubMed  |  
  87. Tang, F.R. and M.K. Sim, 1997. Expression of glutamate receptor subunits 2/3 and 4 in the hypoglossal nucleus of the rat after neurectomy. Exp. Brain Res., 117: 453-456.
    PubMed  |  
  88. Tang, F.R., C.K. Tan and E.A. Ling, 1996. Ultrastructural localization of substance P-like immunoreactivity in the intermediolateral column of spontaneously hypertensive rats and Wistar-Kyoto rats. Histol. Histopathol., 11: 303-311.
    PubMed  |  
  89. Tang, F.R., C.K. Tan, E.A. Ling, 1995. The distribution of NADPH-d in the central grey region (lamina X) of rat upper thoracic spinal cord. J. Neurocytol., 24: 735-743.
    CrossRef  |  PubMed  |  
  90. Tang, F.R., C.K. Tan, E.A. Ling, 1995. Light and electron microscopic studies of the distribution of NADPH-diaphorase in the rat upper thoracic spinal cord with special reference to the spinal autonomic region. Arch. Histol. Cytol., 58: 493-505.
    PubMed  |  
  91. Tang, F.R., C.K. Tan, E.A. Ling, 1995. A comparative study of NADPH-diaphorase in the sympathetic preganglionic neurons of the upper thoracic cord between spontaneously hypertensive rats and Wistar-Kyoto rats. Brain Res., 691: 153-159.
    CrossRef  |  PubMed  |  
  92. Tang, F.R., C.K. Tan and E.A. Ling, 1995. An ultrastructural study of the sympathetic preganglionic neurons that innervate the superior cervical ganglion in spontaneously hypertensive rats and Wistar-Kyoto rats. J. Brain Res., 36: 411-420.
    PubMed  |  Direct Link  |  
  93. Tang, F.R., C.K. Tan and E.A. Ling, 1995. A light-microscopic study of the intermediolateral nucleus following injection of CB-HRP and fluorogold into the superior cervical ganglion of the rat. J. Auton. Nerv. Syst., 50: 333-338.
    CrossRef  |  Direct Link  |  
  94. Tang, F.R., C.K. Tan and E.A. Ling, 1995. A comparative study by retrograde neuronal tracing and substance P immunohistochemistry of sympathetic preganglionic neurons in spontaneously hypertensive rats and Wistar-Kyoto rats. J. Anat., 186: 197-207.
    Direct Link  |