Dr. Dindial  Ramotar
My Social Links

Dr. Dindial Ramotar

Professor and Senior Scientist
University of Montreal, Canada


Highest Degree
Ph.D. in Biochemistry from McGill University, Canada

Share this Profile

Area of Interest:

Pharmacology and Toxicology
100%
Biochemistry
62%
Molecular Toxicology
90%
Cellular Toxicology
75%
Pharmacology
55%

Research Publications in Numbers

Books
0
Chapters
0
Articles
0
Abstracts
0

Selected Publications

  1. Omidi, K., M. Jessulat, M. Hooshyar, D. Burnside and A. Schoenrock et al., 2018. Uncharacterized ORF HUR1 influences the efficiency of non-homologous end-joining repair in Saccharomyces cerevisiae. Gene, 639: 128-136.
    CrossRef  |  Direct Link  |  
  2. Ramotar, D., 2017. The tales of two organic cation transporters, OCT-1 and OCT-2, in Caenorhabditis elegans. ADMET DMPK, 5: 146-158.
    CrossRef  |  Direct Link  |  
  3. Ramotar, D., 2017. Caenorhabditis elegans organic cation transporter-2 is a novel drug uptake transporter that mediates induced mutagenesis by environmental genotoxic compounds. J. Radiation Cancer Res., 8: 61-73.
    CrossRef  |  Direct Link  |  
  4. Kaur, S., Z.M. Ramdzan, M.C. Guiot, L. Li and L. Leduy et al., 2017. CUX1 stimulates APE1 enzymatic activity and increases the resistance of glioblastoma cells to the mono-alkylating agent, temozolomide. Neuro-Oncology, 20: 484-493.
    CrossRef  |  Direct Link  |  
  5. Dakal, T.C., R. Kumar and D. Ramotar, 2017. Structural modeling of human organic cation transporters. Comput. Biol. Chem., 68: 153-163.
    CrossRef  |  Direct Link  |  
  6. Brosseau, N., E. Andreev and D. Ramotar, 2017. Uptake assays to monitor anthracyclines entry into mammalian cells. Bio-Protocol, Vol. 7. 10.21769/BioProtoc.2555.
    CrossRef  |  
  7. Amirthagunabalasingam, S., A. Papaluca, T. Harihar and D. Ramotar, 2017. Imaging the pharynx to measure the uptake of doxorubicin in Caenorhabditis elegans. Bio-Protocol, Vol. 7. 10.21769/BioProtoc.2291.
    CrossRef  |  
  8. Saad, A., K. Bijian, D. Qiu, S.D. Da Silva and M. Marques et al., 2016. Insights into a novel nuclear function for Fascin in the regulation of the amino-acid transporter SLC3A2. Sci. Rep., Vol. 6. 10.1038/srep36699.
    CrossRef  |  
  9. Papaluca, A. and D. Ramotar, 2016. A novel approach using C. elegans DNA damage-induced apoptosis to characterize the dynamics of uptake transporters for therapeutic drug discoveries. Sci. Rep., Vol. 6. 10.1038/srep36026.
    CrossRef  |  
  10. Nassour, H., Z. Wang, A. Saad, A. Papaluca and N. Brosseau et al., 2016. Peroxiredoxin 1 interacts with and blocks the redox factor APE1 from activating interleukin-8 expression. Sci. Rep., Vol. 6. 10.1038/srep29389.
    CrossRef  |  
  11. Andreev, E., N. Brosseau, E. Carmona, A.M. Mes-Masson and D. Ramotar, 2016. The human organic cation transporter OCT1 mediates high affinity uptake of the anticancer drug daunorubicin. Sci. Rep., Vol. 6. 10.1038/srep20508.
    CrossRef  |  
  12. Brosseau, N., E. Andreev and D. Ramotar, 2015. Complementation of the yeast model system reveals that Caenorhabditis elegans OCT-1 is a functional transporter of anthracyclines. PloS One, Vol. 10. 10.1371/journal.pone.0133182.
    CrossRef  |  
  13. Wang, Z., X. Yang, A. Mazouzi and D. Ramotar, 2014. The long N-terminus of the C. elegans DNA repair enzyme APN-1 targets the protein to the nucleus of a heterologous system. Gene, 553: 151-157.
    CrossRef  |  Direct Link  |  
  14. Berra, S., S. Ayachi and D. Ramotar, 2014. Upregulation of the Saccharomyces cerevisiae efflux pump Tpo1 rescues an Imp2 transcription factor‐deficient mutant from bleomycin toxicity. Environ. Mol. Mutagenesis, 55: 518-524.
    CrossRef  |  Direct Link  |  
  15. Ramotar, D. and M. Aouida, 2013. The Bleomycin Transporter. In: Advances in DNA Repair in Cancer Therapy, Panasci, L.C., R. Aloyz and M.A. Alaoui-Jamali (Eds.). Humana Press Inc., USA., pp: 187-209.
  16. El Fadili, K., E. Andreev, Z. Wang and D. Ramotar, 2013. Cellular responses to anthracyclines identify Ku70, a DNA repair factor that changes compartment and remains stable in leukemic cells. Am. J. Cancer Sci., 2: 73-84.
    Direct Link  |  
  17. Aouida, M., M.R. Texeira, J.M. Thevelein, R. Poulin and D. Ramotar, 2013. Agp2, a member of the yeast amino acid permease family, positively regulates polyamine transport at the transcriptional level. PLoS One, Vol. 8. 10.1371/journal.pone.0065717.
    CrossRef  |  
  18. Yang, X., J. Fan, A.A. Ishchenko, D. Patel, M.K. Saparbaev and D. Ramotar, 2012. Functional characterization of the Caenorhabditis elegans DNA repair enzyme APN-1. DNA Repair, 11: 811-822.
    CrossRef  |  Direct Link  |  
  19. Marrakchi, R., C. Chouchani, J. Poschmann, E. Andreev, M. Cherif and D. Ramotar, 2012. A functional autophagy pathway is required for rapamycin-induced degradation of the Sgs1 helicase in Saccharomyces cerevisiae. Biochem. Cell Biol., 91: 123-130.
    CrossRef  |  Direct Link  |  
  20. Poschmann, J., S. Drouin, P.E. Jacques, K. El Fadili, M. Newmarch, F. Robert and D. Ramotar, 2011. The peptidyl prolyl isomerase Rrd1 regulates the elongation of RNA polymerase II during transcriptional stresses. PLoS One, Vol. 6. 10.1371/journal.pone.0023159.
    CrossRef  |  
  21. Mulangi, G.V., V. Phuntumart, M. Aouida, D. Ramotar and P.F. Morris, 2011. Functional analysis of POT1, a rice polyamine transporter. Planta, 235: 1-11.
  22. Marrakchi, R., C. Chouchani, M. Cherif, A. Boudabbous and D. Ramotar, 2011. The isomerase Rrd1 mediates rapid loss of the Sgs1 helicase in response to rapamycin. Biochem. Cell Biol., 89: 332-340.
    CrossRef  |  Direct Link  |  
  23. Jouvet, N., J. Poschmann, J. Douville, R. Marrakchi and D. Ramotar, 2011. RNA polymerase II degradation in response to rapamycin is not mediated through ubiquitylation. Biochem. Biophys. Res. Commun., 413: 248-253.
    CrossRef  |  Direct Link  |  
  24. Zakaria, C., H. Kassahun, X. Yang, J.C. Labbe, H. Nilsen and D. Ramotar, 2010. Caenorhabditis elegans APN-1 plays a vital role in maintaining genome stability. DNA Repair, 9: 169-176.
    CrossRef  |  Direct Link  |  
  25. Wehmeier, S., M.F. Arnold, V.L. Marlow, M. Aouida and K.K. Myka et al., 2010. Internalization of a thiazole-modified peptide in Sinorhizobium meliloti occurs by BacA-dependent and-independent mechanisms. Microbiology, 156: 2702-2713.
    CrossRef  |  Direct Link  |  
  26. Khodami-Pour, A., M. Aouida and D. Ramotar, 2010. The Na+/H+ exchanger Nhx1 of Saccharomyces cerevisiae is essential to limit drug toxicity. Adv. Stud. Biol., 2: 15-34.
  27. Jouvet, N., J. Poschmann, J. Douville, L. Bulet and D. Ramotar, 2010. Rrd1 isomerizes RNA polymerase II in response to rapamycin. BMC Mol. Biol., Vol. 11. 10.1186/1471-2199-11-92.
    CrossRef  |  
  28. Daley, J.M., T.E. Wilson and D. Ramotar, 2010. Hnt3, the yeast homolog of Aprataxin, participates in base excision repair of oxidative DNA lesions and influences post-replication repair of double-strand breaks. DNA Repair., 9: 690-699.
  29. Daley, J.M., C. Zakaria and D. Ramotar, 2010. The endonuclease IV family of apurinic/apyrimidinic endonucleases. Mutation Res./Rev. Mutation Res., 705: 217-227.
    CrossRef  |  Direct Link  |  
  30. Aouida, M., R. Poulin and D. Ramotar, 2010. The human carnitine transporter SLC22A16 mediates high affinity uptake of the anticancer polyamine analogue bleomycin-A5. J. Biol. Chem., 285: 6275-6284.
    CrossRef  |  Direct Link  |  
  31. Aouida, M. and D. Ramotar, 2010. A new twist in cellular resistance to the anticancer drug bleomycin-A5. Curr. Drug Metabolism, 11: 595-602.
    CrossRef  |  Direct Link  |  
  32. Aouida, M., A. Khodami-Pour and D. Ramotar, 2009. Novel role for the Saccharomyces cerevisiae oligopeptide transporter Opt2 in drug detoxification. Biochem. Cell Biol., 87: 653-661.
    CrossRef  |  Direct Link  |  
  33. Azam, S., N. Jouvet, A. Jilani, R. Vongsamphanh, X. Yang, S. Yang and D. Ramotar, 2008. Human glyceraldehyde-3-phosphate dehydrogenase plays a direct role in reactivating oxidized forms of the DNA repair enzyme APE1. J. Biol. Chem., 283: 30632-30641.
    CrossRef  |  Direct Link  |  
  34. Choudhury, S.A., B. Asefa, A. Webb, D. Ramotar and T.Y. Chow, 2007. Functional and genetic analysis of the Saccharomyces cerevisiae RNC1/TRM2: Evidences for its involvement in DNA double-strand break repair. Mol. Cell. Biochem., 300: 215-226.
    CrossRef  |  Direct Link  |  
  35. Azam, S., E. Drobetsky and D. Ramotar, 2007. Overexpression of the cis/trans isomerase PTPA triggers caspase 3-dependent apoptosis. Apoptosis, 12: 1243-1255.
    CrossRef  |  Direct Link  |  
  36. Aouida, M. and D. Ramotar, 2007. A potential mechanism of resistance to the anticancer drug bleomycin. Res. Adv. Cancer, 7: 101-110.
  37. Vongsamphanh, R., J.R. Wagner and D. Ramotar, 2006. Saccharomyces cerevisiae Ogg1 prevents poly (GT) tract instability in the mitochondrial genome. DNA Repair, 5: 235-242.
    CrossRef  |  Direct Link  |  
  38. Tounekti, K., M. Aouida, A. Leduc, J. Poschmann, X. Yang, O. Belhadj and D. Ramotar, 2006. Deletion of the chromatin remodeling gene SPT10 sensitizes yeast cells to a subclass of DNA‐damaging agents. Environ. Mol. Mutagenesis, 47: 707-717.
    CrossRef  |  Direct Link  |  
  39. Douville, J., J. David, K.M. Lemieux, L. Gaudreau and D. Ramotar, 2006. The Saccharomyces cerevisiae phosphatase activator RRD1 is required to modulate gene expression in response to rapamycin exposure. Genetics, 172: 1369-1372.
    CrossRef  |  Direct Link  |  
  40. Aouida, M. and D. Ramotar, 2006. Bleomycin transport holds the key for improved anticancer therapy. Cancer Ther., 4: 171-182.
    Direct Link  |  
  41. Shatilla, A., A.A. Ishchenko, M. Saparbaev and D. Ramotar, 2005. Characterization of Caenorhabditis elegans exonuclease-3 and evidence that a Mg2+-dependent variant exhibits a distinct mode of action on damaged DNA. Biochemistry, 44: 12835-12848.
    CrossRef  |  Direct Link  |  
  42. Shatilla, A., A. Leduc, X. Yang and D. Ramotar, 2005. Identification of two apurinic/apyrimidinic endonucleases from Caenorhabditis elegans by cross-species complementation. DNA Repair, 4: 655-670.
    CrossRef  |  Direct Link  |  
  43. Ramotar, D., J. David and E. Drobetsky, 2005. The Role of a Yeast Homologue of the Human Phosphatase Activator hPTPA in the Cellular Response to Oxidative DNA Damage. In: From DNA Photolesions to Mutations, Skin Cancer and Cell Death, Sage, E., R. Drouin and M. Rouabhia (Eds.). Vol. 5, Royal Society of Chemistry, USA., pp: 103-123.
  44. Ishchenko, A.A., X. Yang, D. Ramotar and M. Saparbaev, 2005. The 3'→ 5' exonuclease of Apn1 provides an alternative pathway to repair 7, 8-dihydro-8-oxodeoxyguanosine in Saccharomyces cerevisiae. Mol. Cell. Biol., 25: 6380-6390.
    CrossRef  |  Direct Link  |  
  45. Desnoyers, J., D. Ramotar, G. Mathonnet, C. Leger and E.A. Drobetsky, 2005. What a Difference a Wavelength Makes: The Role of p53 in Nucleotide Excision Repair of UV-Induced DNA Damage. In: From DNA Photolesions to Mutations, Skin Cancer and Cell Death, Sage, E., R. Drouin and M. Rouabhia (Eds.). Vol. 5, Royal Society of Chemistry, USA., pp: 219-233.
  46. Aouida, M., A. Leduc, R. Poulin and D. Ramotar, 2005. AGP2 encodes the major permease for high affinity polyamine import in Saccharomyces cerevisiae. J. Biol. Chem., 280: 24267-24276.
    CrossRef  |  Direct Link  |  
  47. Wysocki, R., P.K. Fortier, E. Maciaszczyk, M. Thorsen and A. Leduc et al., 2004. Transcriptional activation of metalloid tolerance genes in Saccharomyces cerevisiae requires the AP-1-like proteins Yap1p and Yap8p. Mol. Biol. Cell, 15: 2049-2060.
    CrossRef  |  Direct Link  |  
  48. Ramotar, D., H. Wang and C.H. He, 2004. Cellular Protection Against the Antitumor Drug Bleomycin. In: DNA Repair in Cancer Therapy, Panasci, L.C. and M.A. Alaoui-Jamali (Eds.). Humana Press Inc., USA., pp: 171-196.
  49. Ishchenko, A.A., H. Ide, D. Ramotar, G. Nevinsky and M. Saparbaev, 2004. α-Anomeric deoxynucleotides, anoxic products of ionizing radiation are substrates for the endonuclease IV-type AP endonucleases. Biochemistry, 43: 15210-15216.
    CrossRef  |  Direct Link  |  
  50. Douville, J., J. David, P.K. Fortier and D. Ramotar, 2004. The yeast phosphotyrosyl phosphatase activator protein, yPtpa1/Rrd1, interacts with Sit4 phosphatase to mediate resistance to 4-nitroquinoline-1-oxide and UVA. Curr. Genet., 46: 72-81.
    CrossRef  |  Direct Link  |  
  51. Aouida, M., O. Tounekti, A. Leduc, O. Belhadj, L. Mir and D. Ramotar, 2004. Isolation and characterization of Saccharomyces cerevisiae mutants with enhanced resistance to the anticancer drug bleomycin. Curr. Genet., 45: 265-272.
    CrossRef  |  Direct Link  |  
  52. Aouida, M., N. Page, A. Leduc, M. Peter and D. Ramotar, 2004. A genome-wide screen in Saccharomyces cerevisiae reveals altered transport as a mechanism of resistance to the anticancer drug bleomycin. Cancer Res., 64: 1102-1109.
    CrossRef  |  Direct Link  |  
  53. Aouida, M., A. Leduc, H. Wang and D. Ramotar, 2004. Characterization of a transport and detoxification pathway for the antitumour drug bleomycin in Saccharomyces cerevisiae. Biochem. J., 384: 47-58.
    CrossRef  |  Direct Link  |  
  54. Ramotar, D. and H. Wang, 2003. Protective mechanisms against the antitumor agent bleomycin: Lessons from Saccharomyces cerevisiae. Curr. Genet., 43: 213-224.
    CrossRef  |  Direct Link  |  
  55. Leduc, A., C.H. He and D. Ramotar, 2003. Disruption of the Saccharomyces cerevisiae cell-wall pathway gene SLG1 causes hypersensitivity to the antitumor drug bleomycin. Mol. Genet. Genom., 269: 78-89.
    CrossRef  |  Direct Link  |  
  56. Karumbati, A.S., R.A. Deshpande, A. Jilani, J.R. Vance, D. Ramotar and T.E. Wilson, 2003. The role of yeast DNA 3'-phosphatase Tpp1 and rad1/Rad10 endonuclease in processing spontaneous and induced base lesions. J. Biol. Chem., 278: 31434-31443.
    CrossRef  |  Direct Link  |  
  57. Jilani, A., R. Vongsamphanh, A. Leduc, L. Gros, M. Saparbaev and D. Ramotar, 2003. Characterization of two independent amino acid substitutions that disrupt the DNA repair functions of the yeast Apn1. Biochemistry, 42: 6436-6445.
    CrossRef  |  Direct Link  |  
  58. Wang, H. and D. Ramotar, 2002. Cellular resistance to bleomycin in Saccharomyces cerevisiae is not affected by changes in bleomycin hydrolase levels. Biochem. Cell Biol., 80: 789-796.
    CrossRef  |  Direct Link  |  
  59. Shatilla, A. and D. Ramotar, 2002. Embryonic extracts derived from the nematode Caenorhabditis elegans remove uracil from DNA by the sequential action of uracil-DNA glycosylase and AP (apurinic/apyrimidinic) endonuclease. Biochem. J., 365: 547-553.
    CrossRef  |  Direct Link  |  
  60. Jilani, A. and D. Ramotar, 2002. Purification and partial characterization of a DNA 3'-phosphatase from Schizosaccharomyces pombe. Biochemistry, 41: 7688-7694.
    CrossRef  |  Direct Link  |  
  61. Vongsamphanh, R., P.K. Fortier and D. Ramotar, 2001. Pir1p mediates translocation of the yeast Apn1p endonuclease into the mitochondria to maintain genomic stability. Mol. Cell. Biol., 21: 1647-1655.
    CrossRef  |  Direct Link  |  
  62. Bouganim, N., J. David, R. Wysocki and D. Ramotar, 2001. Yap1 overproduction restores arsenite resistance to the ABC transporter deficient mutant ycf1 by activating ACR3 expression. Biochem. Cell Biol., 79: 441-448.
    CrossRef  |  Direct Link  |  
  63. Yang, X., P. Tellier, J.Y. Masson, T. Vu and D. Ramotar, 1999. Characterization of amino acid substitutions that severely alter the DNA repair functions of Escherichia coli endonuclease IV. Biochemistry, 38: 3615-3623.
    CrossRef  |  Direct Link  |  
  64. Jilani, A., D. Ramotar, C. Slack, C. Ong, X.M. Yang, S.W. Scherer and D.D. Lasko, 1999. Molecular cloning of the human gene, PNKP, encoding a polynucleotide kinase 3′-phosphatase and evidence for its role in repair of DNA strand breaks caused by oxidative damage. J. Biol. Chem., 274: 24176-24186.
    CrossRef  |  Direct Link  |  
  65. He, C.H. and D. Ramotar, 1999. An allele of the yeast RPB7 gene, encoding an essential subunit of RNA polymerase II, reduces cellular resistance to the antitumor drug bleomycin. Biochem. Cell Biol., 77: 375-382.
    CrossRef  |  Direct Link  |  
  66. Ramotar, D., J. Vadnais, J.Y. Masson and S. Tremblay, 1998. Isolation of the Schizosaccharomyces pombe APN1 gene encoding a homologue of Saccharomyces cerevisiae apurinic endonuclease. Biochimica et Biophysica Acta, 1396: 15-20.
    CrossRef  |  
  67. Ramotar, D., E. Belanger, I. Brodeur, J.Y. Masson and E.A. Drobetsky, 1998. A yeast homologue of the human phosphotyrosyl phosphatase activator PTPA is implicated in protection against oxidative DNA damage induced by the model carcinogen 4-nitroquinoline 1-oxide. J. Biol. Chem., 273: 21489-21496.
    CrossRef  |  Direct Link  |  
  68. Masson, J.Y. and D. Ramotar, 1998. The transcriptional activator Imp2p maintains ion homeostasis in Saccharomyces cerevisiae. Genetics, 149: 893-901.
    Direct Link  |  
  69. Kaouass, M., I. Gamache, D. Ramotar, M. Audette and R. Poulin, 1998. The spermidine transport system is regulated by ligand inactivation, endocytosis and by the Npr1p Ser/Thr protein kinase in Saccharomyces cerevisiae. J. Biol. Chem., 273: 2109-2117.
    CrossRef  |  Direct Link  |  
  70. Sander, M. and D. Ramotar, 1997. Partial purification of Pde1 from Saccharomyces cerevisiae: Enzymatic redundancy for the repair of 3 '-Terminal DNA lesions and Abasic sites in yeast. Biochemistry, 36: 6100-6106.
    CrossRef  |  Direct Link  |  
  71. Ramotar, D., 1997. The apurinic/apyrimidinic endonuclease families of DNA repair enzymes. Biochem. Cell. Biol., 75: 327-336.
  72. Masson, J.Y. and D. Ramotar, 1997. Normal processing of AP sites in Apn1‐deficient Saccharomyces cerevisiae is restored by Escherichia coli genes expressing either exonuclease III or endonuclease III. Mol. Microbiol., 24: 711-721.
    CrossRef  |  Direct Link  |  
  73. Legault, J., A. Tremblay, D. Ramotar and M.E. Mirault, 1997. Clusters of S1 nuclease-hypersensitive sites induced in vivo by DNA damage. Mol. Cell. Biol., 17: 5437-5452.
    CrossRef  |  Direct Link  |  
  74. Kaouass, M., M. Audette, D. Ramotar, S. Verma and D. de Montigny et al., 1997. The STK2 gene, which encodes a putative Ser/Thr protein kinase, is required for high-affinity spermidine transport in Saccharomyces cerevisiae. Mol. Cell. Biol., 17: 2994-3004.
    CrossRef  |  Direct Link  |  
  75. Ramotar, D. and J.Y. Masson, 1996. A Saccharomyces cerevisiae mutant defines a new locus essential for resistance to the antitumour drug bleomycin. Can. J. Microbiol., 42: 835-843.
    CrossRef  |  Direct Link  |  
  76. Ramotar, D. and B. Demple, 1996. Functional expression of Escherichia coli endonuclease IV in apurinic endonuclease-deficient yeast. J. Biol. Chem., 271: 7368-7374.
    CrossRef  |  Direct Link  |  
  77. Masson, J.Y., S. Tremblay and D. Ramotar, 1996. The Caenorhabditis elegans gene CeAPN1 encodes a homolog of Escherichia coli and yeast apurinic/apyrimidinic endonuclease. Gene, 179: 291-293.
    CrossRef  |  Direct Link  |  
  78. Masson, J.Y., J. Vadnais and D. Ramotar, 1996. The Schizosaccharomyces pombe spqM gene is a new member of the Qm transcription factor family. Gene, 170: 153-154.
    CrossRef  |  Direct Link  |  
  79. Masson, J.Y. and D. Ramotar, 1996. The Saccharomyces cerevisiae IMP2 gene encodes a transcriptional activator that mediates protection against DNA damage caused by bleomycin and other oxidants. Mol. Cell. Biol., 16: 2091-2100.
    CrossRef  |  Direct Link  |  
  80. He, C.H., J.Y. Masson and D. Ramotar, 1996. Functional mitochondria are essential for Saccharomyces cerevisiae cellular resistance to bleomycin. Curr. Genet., 30: 279-283.
    CrossRef  |  Direct Link  |  
  81. He, C.H., J.Y. Masson and D. Ramotar, 1996. A Saccharomyces cerevisiae phleomycin-sensitive mutant, phl40, is defective in the RAD6 DNA repair gene. Can. J. Microbiol., 42: 1263-1266.
    CrossRef  |  Direct Link  |  
  82. Ramotar, D., 1995. Rapid isolation of any known genes from whole cells of yeast by PCR. Mol. Cell. Biochem., 145: 185-187.
    CrossRef  |  Direct Link  |  
  83. Masson, J.Y., I. Boucher, W.A. Neugebauer, D. Ramotar and R. Brzezinski, 1995. A new chitosanase gene from a Nocardioides sp. is a third member of glycosyl hydrolase family 46. Microbiology, 141: 2629-2635.
    CrossRef  |  Direct Link  |  
  84. Kunz, B.A., E.S. Henson, H. Roche, D. Ramotar, T. Nunoshiba and B. Demple, 1994. Specificity of the mutator caused by deletion of the yeast structural gene (APN1) for the major apurinic endonuclease. Proc. Nat. Acad. Sci., 91: 8165-8169.
    CrossRef  |  Direct Link  |  
  85. Game, J., M. Bell, D. Ramotar and H. Miller, 1994. X-XI. Yeast mapping reports. The use of random‐breakage mapping to locate the genes APN1 and YUH1 in the Saccharomyces genome, and to determine gene order near the left end of chromosome XI. Yeast, 10: 543-554.
    CrossRef  |  Direct Link  |  
  86. Ramotar, D., C. Kim, R. Lillis and B. Demple, 1993. Intracellular localization of the Apn1 DNA repair enzyme of Saccharomyces cerevisiae. Nuclear transport signals and biological role. J. Biol. Chem., 268: 20533-20539.
    Direct Link  |  
  87. Ramotar, D. and B. Demple, 1993. Enzymes that Repair Oxidative Damage to DNA. In: DNA and Free Radicals, Halliwell, B. and O.I. Aruoma (Eds.). Ellis Horwood Publisher, USA., pp: 165-191.
  88. Ramotar, D., S.C. Popoff, E.B. Gralla and B. Demple, 1991. Cellular role of yeast Apn1 apurinic endonuclease/3'-diesterase: Repair of oxidative and alkylation DNA damage and control of spontaneous mutation. Mol. Cell. Biol., 11: 4537-4544.
    CrossRef  |  Direct Link  |  
  89. Ramotar, D., S.C. Popoff and B. Demple, 1991. Complementation of DNA repair‐deficient Escherichia coli by the yeast Apn1 apurinic/apyrimidinic endonuclease gene. Mol. Microbiol., 5: 149-155.
    CrossRef  |  Direct Link  |  
  90. Ramotar, D. and M.J. Fraser, 1989. Neurospora endo-exonuclease in heat-shocked mycelia: Evidence for a novel heat shock induced function. Biochem. Cell Biol., 67: 642-652.
    CrossRef  |  Direct Link  |  
  91. Ramotar, D., A.H. Auchincloss and M.J. Fraser, 1987. Nuclear endo-exonuclease of Neurospora crassa. Evidence for a role in DNA repair. J. Biol. Chem., 262: 425-431.
    Direct Link  |  
  92. Ramotar, D. and E.B. Newman, 1986. An estimate of the extent of deamination of L-serine in auxotrophs of Escherichia coli K-12. Can. J. Microbiol., 32: 842-846.
    CrossRef  |  Direct Link  |  
  93. Ramotar, D. and J.Y. Masson, 1979. Saccharomyces cerevisiae DNA repair processes: An update. Mol. Cell. Biochem., 158: 65-75.
    CrossRef  |  Direct Link  |